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Abstract
We observe Andreev reflection in a YBCO–GaN junction through differential conductance
spectroscopy. A strong characteristic zero-bias peak was observed and persisted up to the
critical temperature of the superconductor with a smaller superconducting order parameter Δ
∼ 1 meV. The presence of Andreev reflection with the small Δ in comparison to its value for
high-Tc superconductors forms an important milestone toward demonstration of
superconducting proximity in high-Tc/semiconductor junctions. Experimental results were
then compared to the theoretical model with good agreement. Efficient injection of Cooper
pairs into direct bandgap semiconducting structures, together with high transition temperature
of YBCO, can pave the way to novel optoelectronics and quantum optical studies of high-Tc

materials.
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(Some figures may appear in colour only in the online journal)

Hybrid superconductor–semiconductor structures form a
rapidly growing field of research [1, 2], which utilizes the
unique physical properties of the superconducting state [3]
along with the vast knowledge and fabrication capabilities
in the field of semiconductors. Various applications involv-
ing such hybrid structures have been shown, including super-
conducting light-emitting diodes (SLEDs) and quantum dots
[4–6], Bell-state analyzers [7] and superconductor-based
waveguide amplifiers [8]. Of note is the SLED which is a
hybrid superconductor–semiconductor device, where super-
conducting Cooper pairs recombine with semiconductor hole
pairs, forming polarization-entangled photon pairs [9]. While
low-Tc Cooper-pair injection into semiconductors has been
observed previously [10–13], including the recent demon-
stration of radiative recombination of Cooper pairs in SLED
devices [14], they must operate at very low temperatures due

3 Authors to whom any correspondence should be addressed.
4 Both authors contributed equally to this work.

to low critical temperature of the superconductor being used
(∼10 K).

High-Tc superconductors have the strong advantage of hav-
ing a high critical temperature (above the boiling temper-
ature of liquid nitrogen of 77 K). Realization of high-Tc

superconductor–semiconductor light-emitting structures can
allow using quantum optics to probe high-Tc superconductors.
Although there has been an unprecedented effort to under-
stand the mechanism of high-Tc superconductivity, it still
remains unsolved. This difficulty stems largely from the fact
that even in the normal state above Tc, these materials are
not well-understood. Superconductivity is obtained by impu-
rity doping, and the parent material is an antiferromagnetic
strongly-correlated Mott insulator [15], where single-particle
band theory description fails. Recent studies have revealed a
complex phase diagram vs temperature and doping, as well
as the unconventional d-wave symmetry of the order parame-
ter in high-Tc materials [16, 17]. Other aspects are still being
debated—such as the appearance of self-organization with
non-uniform charge carrier density (stripes) [18], and the ori-
gin of the pseudogap phase [19, 20] with possible relation
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to the formation of Cooper pairs without condensation above
Tc. Various experimental techniques have been employed to
study unconventional superconductivity—ranging from elec-
trical transport and tunneling [21–28] to infrared electrody-
namics [16], resulting in a substantial body of knowledge.
However, these techniques do not have access to the phase
information of individual charge carriers, or various corre-
lations within the Cooper pairs such as classical spin and
momentum correlations, as well as quantum entanglement.
Optical access to individual charge carriers through quantum
light–matter interaction with relative phase information and
quantum correlations can provide important insights into the
nature of unconventional superconductivity and pave the way
for novel optoelectronics.

The challenge in using high-Tc superconductors is that
their growth and fabrication poses a greater challenge in com-
parison to their low-Tc counterparts [29]. High-Tc supercon-
ductors require stringent growth conditions and can degrade
rapidly when incorporated into a given semiconductor device
or even under standard ambient conditions [30, 31]. Neverthe-
less, devices incorporating high-Tc superconductors have been
successfully demonstrated. These include terahertz sources
[32], RF SQUIDs [33] and YBCO–Graphene junctions [34]
to name a few. In addition, much research has been done on
Andreev bound states in high-Tc superconductors [24–28].

The second required component for the high-Tc supercon-
ductor–semiconductor junction is a semiconductor such as
GaN which has a decomposition temperature of 1300 K [35], a
property enabling it to serve as the growth substrate for YBCO
at high temperatures [36, 37]. Epitaxial growth of YBCO
on GaN was demonstrated recently, however no Cooper pair
injection was achieved [38].

Here we demonstrate high-Tc Cooper-pair injection in
a superconductor–semiconductor junction (YBCO–GaN),
exhibiting strong Andreev reflection in the electrical con-
ductance spectra. High injection efficiency was achieved by
improving the semiconductor–superconductor interface and
optimizing the YBCO growth process. The combination of
YBCO with a GaN-based LED structure allows for the design
of high-temperature SLEDs. A model for describing the elec-
trical conductance of high-Tc superconductor–semiconductor
junctions [39] was then used in good agreement with our
experimental observations.

For our experiments, a 3.5 μm thick n-GaN layer (n ∼ 5 ×
1018 cm−3) with the top 200 nm thick heavily doped (∼2 ×
1019 cm−3) was initially grown on buffered Al2O3 substrate. A
100 nm YBCO layer was then grown in a suitable high vacuum
chamber using a customized pulsed laser deposition system
[40]. A KrF excimer laser (248 nm) with pulse energy of 38 mJ
and a repetition rate of 2 Hz was used. The sample was heated
up to a temperature of 650 ◦C at a rate of 18 ◦C min−1 and
was kept under oxygen pressure of 0.195 mbar for the duration
of the growth. After growth was completed, that sample was
cooled down at a rate of 18 ◦C min−1 in a 100 mbar oxygen
atmosphere to avoid the formation of oxygen vacancies.

For characterization an XRD test was performed
(figure 1(c)) to check for the composition of the various
layers. The obtained XRD profile matched the XRD profile

from the previous work with the same characteristic peaks
indicating a layer stack composed of YBCO, GaN and a Sap-
phire substrate. Additional characterization was performed
using SEM (figures 1(a) and (b)) where a portion of the sample
was etched using a focused ion beam. The test revealed a top
YBCO layer with 100 nm thickness. Below the YBCO layer
was a 3.5 μm GaN layer followed by the sapphire substrate.

Following the growth of multiple samples, half of each
sample was dipped in a solution of 0.01% H3PO4 in order to
remove the top YBCO layer and expose the bottom GaN layer.
The samples were then placed inside a ceramic chip holder
(LCC28) with aluminum wires being bonded to both YBCO
and GaN layers via wedge bonding. The samples were then
inserted into the cryostat for testing.

The measurement of temperature dependent resistance has
revealed a critical temperature of about ∼80 K which is close
to the maximum reported value of 93 K for YBCO [41]. Resid-
ual series resistance of ∼120 Ω below Tc was also observed
and is attributed to non-superconducting regions of the device.
The wide transition between the normal and superconduct-
ing state (figure 2(b)) can be attributed to multiple domains
inside the superconductor having different critical tempera-
tures. Thus, true global superconductivity is obtained at a
lower (albeit still high) temperature (∼80 K) in comparison
to an ordered superconductor. Since YBCO/GaN growth was
first demonstrated very recently [38] the growth process may
not be fully optimized; however, important information can be
extracted from our measurements. Both the broadening and
reduced Tc can be attributed to large defect density and dif-
fusion of Ga atoms from the GaN layers into the YBCO [38].
As the exact profile of the diffused Ga atoms is unknown, we
cannot pinpoint the exact location inside the junction where
Andreev reflection takes place. Electrical transport measure-
ments were then conducted using four-probe configuration
(figure 2(a)). This configuration ensures that only the sample
resistance is measured and not the wires or the sample-wire
interface. This is due to the fact that the only measured voltage
is the voltage drop on the device itself. Thus even if Andreev
reflection does take place between the YBCO and the alu-
minum bonding wires, it will not appear in our measurement.
The conductance measurements (figure 3) revealed a strong
zero-bias peak with significant dependence on the temperature
of the junction. The peak conductance decreases as the tem-
perature increases up to the critical temperature. The width of
the zero-bias peak increases with increasing temperature due
to the growing thermal energy of the charge carriers, which
broadens the peak.

In order to model the experimental results we used a theo-
retical description of carrier injection and the resulting con-
ductance spectra of high-Tc superconductor–semiconductor
junctions formulated by Tanaka and Kashiwaya [39]. The
model is based on the Blonder–Tinkham–Klapwijk (BTK)
theory [42] describing the behavior of quasiparticle excita-
tions from the superconducting state. Using the quasipar-
ticle description, the electrical conductance spectra can be
calculated. The complete wave function is composed of two
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Figure 1. (a) and (b) SEM images of the entire device stack showing a 3.5 μm GaN layer with a thin YBCO layer on top. The Pt protection
layer was added during SEM imaging. (c) XRD peak spectrum of the measured sample. Characteristic peaks to YBCO, GaN and sapphire
(AlO) were measured.

components, satisfying the Bogoliubov–de-Gennes equations:
⎧⎪⎪⎨
⎪⎪⎩

[
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2

2m
d2

dx2
− μ(x) + V(x)

]
· u(x) +Δ(x) · v(x) = E · u(x)

−
[
− �

2

2m
d2

dx2
− μ(x) + V(x)

]
· v(x) +Δ(x) · u(x) = E · v(x)

(1)
With μ(x), V(x),Δ(x) being the chemical potential, poten-
tial barrier and the superconducting order parameter cor-
respondingly, and u(x), v(x) being the quasiparticle wave
functions. A delta barrier is assumed to exist at the super-
conductor–semiconductor interface having an effective barrier
strength parameter Z = H/�vf where vf is the Fermi velocity
and H is the height of the delta barrier. For a small Z, the junc-
tion is transparent and Andreev reflection takes place, while
for a large Z Andreev reflection is inhibited and the tunnel-
ing regime takes place. While the original BTK model copes

with superconductors described by the BCS model, YBCO is
a not a BCS superconductor and thus the anisotropic model
[39] is required. This model takes into account the k depen-
dence of the superconducting order parameter Δ. If an s-wave
superconductor is assumed, equations of the model reduce
to the original BTK model equations. Since we included a
broadening term in our model, the results for either d-wave
or s-wave models result in similar spectra. The normal junc-
tion conductivity is expressed as σN � 4λ

(1+λ)2+4Z2 where λ is
the wave-vector mismatch between the superconductor and
semiconductor. The resulting normalized conductance is:

σR =
1 + σN|Γ+|2 + (σN − 1)|Γ+Γ−|2

|1 + (σN − 1)Γ+Γ− exp(i[ϕ− − ϕ+])|2
, (2)

where Γ± = E−Ω±
|Δ±| ,Ω± =

√
E2 − |Δ±|2 and Δ± is the pair
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Figure 2. (a) Schematics of the device and four-probe measuring technique. (b) Measured sample resistance as function of temperature also
done in a four-probe configuration (all four probes connected to the YBCO layer). Residual series resistance of non-superconducting YBCO
was also observed.

Figure 3. (a) Normalized conductance spectra of the YBCO–GaN junction. A strong zero-bias peak is evident, decreasing in magnitude and
broadening up to the critical temperature. (b) Measured (solid lines) and modeled (dashed lines) spectral shapes of the zero-bias peak. (c)
Extracted dependence on the temperature of the order parameter Δ(T ) and broadening Γ (T).

potential of the electron-like and hole-like quasiparticles and
ϕ± is the phase of each pair potential.

Using this model, a good agreement with theory was
obtained (figure 3(b)) with an effective barrier strength Z of
∼0.4 and an induced superconducting order parameter Δ of
∼1 meV. The small value obtained for the order parameter
may be attributed to the proximity effect, as superconduc-
tivity is induced in the semiconductor albeit with a reduced
magnitude of the order parameter Δ (in relation to its value

in the parent superconductor) [43]. Earlier works [13] have
also demonstrated similar behavior in Nb/Si junctions, with a
reduced value of Δ. Moreover, disorder in the superconductor
can also lead to a reduction in the value of Δ [44]. Such dis-
order can also be the cause behind the broadened transition in
the resistance-temperature dependence (figure 2(b)). We have
performed a fit for the superconducting gap Δ as well as the
broadening term Γ. We have used the general form Γ = Γ0 +
αkBT where Γ0,α are fitting coefficients, kB is the Boltzmann
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coefficient and T is the sample temperature. The obtained
coefficients were Γ0 = 1.5 [meV] ,α = 1/2. For Δ, a gen-
eral fitting was performed with (T = 3.5 K) ≈ 1 [meV]. The
normalized values of Γ (T) ,Δ(T) (relative to 3.5 K) appear in
figure 3(c). The low effective barrier strength coupled with the
strong signature of Andreev reflection show that YBCO–GaN
junctions can potentially have excellent electrical properties.

In conclusion, we have demonstrated strong Andreev
reflection in a YBCO–GaN junction. Theoretical modeling
resulted in good agreement with experimental results. The
reduced value of Δ may be attributed to the superconducting
proximity effect, which is strongly related to the phenomenon
of Andreev reflection. This was achieved through the high
doping of the GaN layer as well as a good contact between
the YBCO and GaN layers. This demonstration of a high-Tc

superconductor coupled to a wide-bandgap semiconductor can
pave the way for future hybrid optoelectronic devices, work-
ing at higher temperatures around 100 K and enabling quantum
optical probing of high-Tc superconductivity.
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