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Abstract
We study a new effect of Cooper-pair-based two-photon gain in semiconductor-superconductor
structures, showing broadband enhancement of ultrafast two-photon amplification.We further show
that with the superconducting enhancement, atmoderately high seed intensities, the two-photon gain
contribution approaches that of the one-photon gain. A full quantum-opticalmodel of singly- and
fully-stimulated two-photon emission is developed. Our results provide new insights on nonlinear
light–matter interaction in the superconducting state, including the possibility of coherent control in
two-photon semiconductor-superconductor devices. The theoretically-demonstrated effects can have
important implications in optoelectronics and in coherent-control applications.

1. Introduction

Superconducting optoelectronics, based on superconductivity in semiconductors is a rapidly growing field of
research [1–8]. One of themany new fascinating phenomena related to superconductivity induced in
semiconductors by the proximity effect, is enhanced light emission. In particular—enhancedCooper-pair-
based two-photon emission (TPE).Without superconducting enhancement, TPE has been studied as the basis
for an alternative formof quantumoscillators [9–11]. Such TPE sources exhibit a rich spectrumof both classical
and quantumphenomena including bi-stability and giant pulse generation, as well as completely quantum
processes like squeezing [12]. In semiconductors, TPEwas demonstrated recently [13–16]with potential
applications of spontaneous TPE in quantum technologies [17–19], as well as novel light amplification in
electrically-pumped devices based on singly-stimulated TPE [13] and fully-stimulated TPE [20, 21]. This two-
photon gain (TPG) allows ultrafast pulse compression [22], and can be further enhanced in the nondegenerate
case [23]. Superconducting proximity effect has been shown lately to significantly enhance photon pair emission
from semiconductor light-emitting diodes [1] so that the resulting spontaneous emission has a significant
contribution of Cooper-pair based TPE (figure 1(a)). This is a strong enhancement of several orders of
magnitude, compared to spontaneous TPE in semiconductors without superconductivity [13]. It suggests that
othermulti-photon processes could benefit from similar enhancement including the nonlinear effect of
semiconductor TPG [21]with promising applications in ultrafast electrically-pumped devices.

Here we propose and analyze theoretically a new effect of enhanced light amplification in electrically-driven
semiconductor-superconductor structures, including Cooper-pair based TPG in a superconducting proximity
region of the semiconductor. Conduction bandCooper-paired electrons in the proximity region form amany-
body Bardeen-Cooper-Schrieffer (BCS) state [24]. This, in turn, yields enhanced emission through
recombination of conduction-bandCooper pair electronswith valence-band holes [25]. The core idea of our
proposal is to couple a superconducting BCS state to a structure capable of light amplification (a semiconductor)
in order to achieve enhanced two-photon gain.

Our fully-quantummodel shows broadband enhancement of both singly-stimulated (figure 1(b)) and fully-
stimulated (figure 1(c))Cooper-pair based TPEprocesses. The calculations are based on a fullmultimode
treatment of the ultrafast light–matter interaction in a superconducting proximity region of the semiconductor,
resulting in enhanced two-photon amplification. Besides enhancing two-photon interactions, the use of
ultrafast pulses avoids any effects of light-induced heating and reduction of the superconducting order
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parameter. An intense ultrafast fs pulsemay also reduce the order parameter locally byCooper-pair breaking
and heating [26–29], with two different time scales: the longer thermalization time and the shorter Cooper-pair
breaking time.

The thermalization time is on the scale of several tens of ps, whereas theCooper-pair breaking is on a shorter
time scale of several ps. Despite being relatively short, this time is two orders ofmagnitude longer than typical
ultrafast fs laser pulse duration.Moreover, it is worthy to note that the overall reduction of the order parameter is
on the scale of a few percent [28]. Therefore, the pulse can propagate through the amplifier, experiencing
superconducting order parameter with standard ultrafast fs-pulse lasers operating at tens ofMHz repetition
rates. Our results show strong enhancement of the TPG close to the superconducting-gap related resonance. The
bandwidth of the TPG is shown to become broader at higher carrier injection levels.

2. Theoreticalmodel and results

In our proposal, we consider a direct-bandgap semiconductor vertical p-n junctionwith a top n-doped layer
contacted by an s-wave superconductor (figure 1(e)). For sufficiently thin n-doped layer, the p-n junction
recombination region is in superconducting proximity [25, 30].We assume that the proximity itself has been
established—as is usually assumed in the superconducting optoelectronics theory [1, 2] and has been
demonstrated experimentally [4]. The photonic structure in our proposal can be similar to that of edge-emitting
semiconductor laser diodes and amplifiers [31]. The light pulse can propagate horizontally—perpendicular to
the p-n junction and the current injection direction. Furthermore, we have consideredmultimode-photonic
state, constituted of a single transversal wave-guidemode and broad range of longitudinalmodes accounting for
the short fs-scale pulses. In order to perform a full quantum-optical analysis of the ultrafast-pulse TPG, in our

Figure 1. Feynman diagrams of theCooper-pair based emission processes. The solid lines indicate electrons, the dashed lines indicate
holes, and thewavy lines indicate photons. (a) Spontaneous TPE. (b) Singly-stimulated TPE. (c) Fully-stimulated TPE. (d)Energy
diagramof fully-stimulated TPE in a direct-bandgap semiconductor with conduction band (CB)Cooper pair electrons recombining
with valence band (VB) holes. (e)A schematic drawing of a superconducting light amplifier structure.
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model themultimode photonic state is given in terms of coherent states on both inputs of the two-photon
process Ph .q q q q,a b a b

| | |a añ µ å ñ ñ This state is waveguided in the proximity region p-n junction (figure 1(e)),
where the superconducting gap is in the semiconductor conduction bandwith electrons in a BCS state, while the
valence band is in the normal state of holes (figure 1(d)). The Fermi level of the superconductor contact attached
to the n-type semiconductor is alignedwith the conduction band of the semiconductor for effective electron
Cooper-pair injection. Therefore at the p-n interface, the proximity is induced byCooper-pair injection from
the n-type contact side, and the radiative recombination is of normal holes and BCS correlated electrons [1]. By
performing perturbative analysis we calculate the one-photon and two-photon stimulated emission spectra, and
the corresponding TPG.Ourmodel is based on a full BCS theory atfinite temperatures, and it includes the BCS
ground state, as well as the quasiparticle excitations out of the ground state, described by the Bogoliubov
transformation:

c t u s ve e e 1k k k
t

k
E t

k
E t

,
i i

,
i

,n k k( ) ( ) ( )† ˜ †
¯g g= -s

m
s s s

-
-

where an electron creation operator ck,
†
s is given in terms of the quasiparticle operators , ,k k, ,

†g gs s

E E,n c n k
eV

2
am̃ m= + + = k k, ,n n p

k

m n p
2 2

, 2 ,
n p

2

,
( ) ( )x x m+ D = - μn andμp are the electron quasi-Fermi level

and hole quasi-Fermi level, respectively,mn andmp the electron and holemasses, respectively,Va the applied
voltage,Ec the edge of the conduction band, 2Δ the superconducting gap, s 1 1( )= -s for ( )s =   and
u v k E1 1 2 .k k n k

1 2( ) {[ ( ) ( ) ] }x= + - / Thefinal state is the result of a light–matter couplingHamiltonian
H B b c a H c. .k q k q k q k qI , , , , ,

†= å +s s s- operating on the initial state.
In terms of the BCS quasiparticle operators the light–matter couplingHamiltonian, using natural units

c 1( ) = = is:

H B u b a s B v b a H.c. 2
k q

k q k k q q
q

k q k k q qI k k
,

, , , , , ,

1

1 1 1

2

2 2 2
( )†

¯
† †

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å å åg g= - +

s
s s s s s- - -

where Bk q, is the coupling energy, bk,s and k,g s are hole and BCS quasiparticle annihilation operators,

respectively, with crystalmomentum k and spinσ, and aq
† is the photon creation operator withmomentum q.

The initial state of the system is given by Ph FS BCS ,i| | | |c ñ = ñ ñ ñ where Ph| ñ represents themultimode photonic
coherent state, FS| ñdenotes the Fermi sea of holes in the valence band, and BCS| ñ is the electron superconducting
BCS state. The two-photon interactions are represented by two-vertex Feynman diagrams (figure 1). TheGreen
functions resulting fromnon-vanishing c c type† †- terms in the superconducting state are represented by
double-arrowed electron propagators [32]. TheseGreen functions allowpair emission through a single
connected second-order Feynman diagram, contrary to the disconnected pair offirst-order single-electron
transitions. Using the interaction picture, the 1st and 2nd order contributions to the time evolution of the initial

state are t H t1 i dt
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where the interaction pictureHamiltonian is given by H t He eI
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I
H ti i0 0( ) = - withH0 the unperturbed

Hamiltonian of BCS conduction band and a Fermi sea of holes in the valence band.
The transition amplitudes for the one-photon emission process and theTPE process are given by
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Assuming that the Fermi–Dirac distributions f
k
p n( ) and u v,k k are slowly-varying on the scale of q, and

neglecting the dependence of Bk on k (B B ,k )= the one-photon emission rate is:
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E E E eV ,g c v a= + + Ev the edge of the conduction band, , ,q p n w are photon, hole, and electron energies
respectively, and C e1

2| | is the normalization constant. It is worthy to note that the normal one-photon behavior
can be obtained by neglecting the effects of superconductivity. This is equivalent to taking the limit 0D  for
electron-like quasiparticles so that u 1,k  v 0k  and E k .k n ( )x This results in the normal-material based
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rate is:
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This expression can be significantly simplified by taking the semiclassical approximation 1q| |a  thus
neglecting the spontaneous emission terms compared to the stimulated ones. To further simplify, in the limit of
a single-mode case at zero temperature (T 0)= the gain is:
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This one-photon gain, as expected, has no dependence on the seed intensity, and has a negligible dependence

onD since 2 .qnm̃ wD - The step functions define a lower cutoff Eg and awidth of p n
2 2m m+ + D .

Amuch richer behavior appears in the following calculation of the superconductivity-enhanced TPG. The
matrix element for the stimulated TPE in this case is given by:
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with Q ,SPT Q ,SST QFST representing the spontaneous, singly-stimulated and fully-stimulated TPE transitions,
respectively (figure 1).More explicitly, these terms are:
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As it can be seen from equations (8)–(11), QSPT does not depend on the seed intensity, QSST is 2( )O a —

proportional to the seed intensity, and QFST is 4( )O a —proportional to the square of the seed intensity. A unique
property of two-photon processes andTPG in particular, is the possibility of employing interference of various
two-photon transition paths involving different spectral components of ultrafast pulses for coherent control of
the process [33]. Our results clearly demonstrate the possibility of coherent control in superconducting two-
photon gain based on such interference terms (equations (10), (11)). Next, we calculate the valence band hole
Fermi-sea, and conduction band electron BCS contributions:
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with I I,SST FST the singly- and fully-stimulated emission terms (figures 1(b), (c)), respectively, which are
acquired from QSST and QFST after summation, k qq p n1 1i
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stants. This Cooper-pair based stimulated TPE rate attains a resonance as 12wD approaches W (figures 2, 3), it is
proportional to 2D and hence vanishes for temperatures higher than the superconducting transition
temperature (Tc)whereD vanishes. A similar expression is evaluated for the absorption rate. Lastly, the TPG
can be calculated from the stimulated TPE rate (equation (15)) yielding:
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wherewe have defined I C I Ie
e

SST FST= + + and I ,a an equivalent expression for the absorption rate. C C,e a are
constants. Considering for simplicity a two-mode case atT 0= with 1q| |a  :

Figure 2.Cooper-pair based TPG spectra versus temperature T, with T 00 ( )D º D = for 400.q| | ~a The gain is given in units of
cm .1- The inset shows a slice of the gain spectra at a given T.
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This gain has a linear dependence on the seed intensity—similar to the case of semiconductor TPGwithout
superconductivity [20, 21], and has a very broad spectrumwithfinite gain from0 to E ,g n pm m+ + (forT 0 .)=
The spectra forfinite temperatures are shown infigure 2.

We calculated the superconductivity-enhanced TPG,while taking into consideration the one-photon gain
and loss under various conditions. The spectral shape of the gain has two characteristic bandwidth scales, one
that is sharp and narrowpertaining to a resonance of the virtual state in the second order process as shown in
figure 1(d), and another lesser inmagnitude yet on amuch broader scale.The spectral slice inset infigure 2
demonstrates this double-bandwidth shape of the gain spectra.Moreover, as the temperature approaches Tc, the
effects of superconductivity, with the corresponding resonance at ,D disappear (figure 2).We also studied the
effect of carrier injection level on the TPG. It can be seen infigure 3 that for increasing carrier density (quasi-
Fermi level position)TPG increases and its spectrumbecomes broader, with one-photon loss dominating the
high-energy end of the spectrum.

In the low temperature limit T 0, and for a single-mode inputwith relatively high intensity 1q| |a  , a
simple expression is obtained for the ratio between the one-photon andTPG:

g

g
C B

1 2 2

2 2 2
18q

q

q q q

n

n n n n

2

1
2 2

2
˜ | | | |

[ ( ˜ )]
( ˜ ) ( ˜ ) ( ˜ )

( )
( )

( )
⎜ ⎟⎛
⎝

⎞
⎠ ⎡⎣ ⎤⎦

a
w m

m w w m m w m
=

D
W

- Q -

Q - Q - + - Q -

where C m m4 .qn n n p p n
2 2 2 2˜ ( ) [( ˜ ) ]m m m w m= - D + + D - + D This expression is proportional to the seed

intensity and ,2D and hence formoderately high intensities the superconductivity-enhanced TPGbecomes
comparable to its one-photon equivalent. Using characteristic values of III-V semiconductors we estimate that
the TPGmagnitudewill approach its one-photon counterpart for 10q

2 7| |a » (figure 4), corresponding to pJ-
scale pulse energy. For ultrafast pulses the bandwidth can introduce some variance to the pulse energy.
Therefore, we estimate only the order ofmagnitude of the pulse energy

This result is several orders ofmagnitude lower than the typical values of pulse energies required to observe
TPG in semiconductors without superconductivity [21]. In principle in the extremely strong field limit
nonlinear optical interactionswith field strengths on the scale of ionization field strengths (E0∼5×1011 Vm−1

[34]) could require non-perturbativemodelling. However, in our calculations, the largest pulse energy
considered is on the pJ scale, which corresponds to intensities about eight orders ofmagnitude smaller than
ionization intensities

Figure 3.Cooper-pair based TPG spectra versus quasi-Fermi level location (carrier density) for 400.q| | ~a The gain is given in units
of cm 1- .
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3. Conclusion

In conclusion, we have shown that Cooper-pair recombination in semiconductor-superconductor structures
results in significant enhancement of ultrafast TPG.We developed a full quantummodel of singly and fully-
stimulated TPE in superconductivity enhanced recombination in semiconductors, allowing transition-path
interference for coherent control applications. Furthermore, we have shown that atmoderately high seed
intensities the TPG contribution becomes comparable to the one-photon gain.
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