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Abstract

We study a new effect of Cooper-pair-based two-photon gain in semiconductor-superconductor
structures, showing broadband enhancement of ultrafast two-photon amplification. We further show
that with the superconducting enhancement, at moderately high seed intensities, the two-photon gain
contribution approaches that of the one-photon gain. A full quantum-optical model of singly- and
fully-stimulated two-photon emission is developed. Our results provide new insights on nonlinear
light—matter interaction in the superconducting state, including the possibility of coherent control in
two-photon semiconductor-superconductor devices. The theoretically-demonstrated effects can have
important implications in optoelectronics and in coherent-control applications.

1. Introduction

Superconducting optoelectronics, based on superconductivity in semiconductors is a rapidly growing field of
research [1-8]. One of the many new fascinating phenomena related to superconductivity induced in
semiconductors by the proximity effect, is enhanced light emission. In particular—enhanced Cooper-pair-
based two-photon emission (TPE). Without superconducting enhancement, TPE has been studied as the basis
for an alternative form of quantum oscillators [9—11]. Such TPE sources exhibit a rich spectrum of both classical
and quantum phenomena including bi-stability and giant pulse generation, as well as completely quantum
processes like squeezing [12]. In semiconductors, TPE was demonstrated recently [ 13—16] with potential
applications of spontaneous TPE in quantum technologies [ 17-19], as well as novel light amplification in
electrically-pumped devices based on singly-stimulated TPE [13] and fully-stimulated TPE [20, 21]. This two-
photon gain (TPG) allows ultrafast pulse compression [22], and can be further enhanced in the nondegenerate
case [23]. Superconducting proximity effect has been shown lately to significantly enhance photon pair emission
from semiconductor light-emitting diodes [1] so that the resulting spontaneous emission has a significant
contribution of Cooper-pair based TPE (figure 1(a)). This is a strong enhancement of several orders of
magnitude, compared to spontaneous TPE in semiconductors without superconductivity [13]. It suggests that
other multi-photon processes could benefit from similar enhancement including the nonlinear effect of
semiconductor TPG [21] with promising applications in ultrafast electrically-pumped devices.

Here we propose and analyze theoretically a new effect of enhanced light amplification in electrically-driven
semiconductor-superconductor structures, including Cooper-pair based TPG in a superconducting proximity
region of the semiconductor. Conduction band Cooper-paired electrons in the proximity region form a many-
body Bardeen-Cooper-Schrieffer (BCS) state [24]. This, in turn, yields enhanced emission through
recombination of conduction-band Cooper pair electrons with valence-band holes [25]. The core idea of our
proposal is to couple a superconducting BCS state to a structure capable of light amplification (a semiconductor)
in order to achieve enhanced two-photon gain.

Our fully-quantum model shows broadband enhancement of both singly-stimulated (figure 1(b)) and fully-
stimulated (figure 1(c)) Cooper-pair based TPE processes. The calculations are based on a full multimode
treatment of the ultrafast light—matter interaction in a superconducting proximity region of the semiconductor,
resulting in enhanced two-photon amplification. Besides enhancing two-photon interactions, the use of
ultrafast pulses avoids any effects of light-induced heating and reduction of the superconducting order

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Feynman diagrams of the Cooper-pair based emission processes. The solid lines indicate electrons, the dashed lines indicate
holes, and the wavy lines indicate photons. (a) Spontaneous TPE. (b) Singly-stimulated TPE. (c) Fully-stimulated TPE. (d) Energy
diagram of fully-stimulated TPE in a direct-bandgap semiconductor with conduction band (CB) Cooper pair electrons recombining
with valence band (VB) holes. (e) A schematic drawing of a superconducting light amplifier structure.

p-type

parameter. An intense ultrafast fs pulse may also reduce the order parameter locally by Cooper-pair breaking
and heating [26—29], with two different time scales: the longer thermalization time and the shorter Cooper-pair
breaking time.

The thermalization time is on the scale of several tens of ps, whereas the Cooper-pair breaking is on a shorter
time scale of several ps. Despite being relatively short, this time is two orders of magnitude longer than typical
ultrafast fs laser pulse duration. Moreover, it is worthy to note that the overall reduction of the order parameter is
on the scale of a few percent [28]. Therefore, the pulse can propagate through the amplifier, experiencing
superconducting order parameter with standard ultrafast fs-pulse lasers operating at tens of MHz repetition
rates. Our results show strong enhancement of the TPG close to the superconducting-gap related resonance. The
bandwidth of the TPG is shown to become broader at higher carrier injection levels.

2. Theoretical model and results

In our proposal, we consider a direct-bandgap semiconductor vertical p-n junction with a top n-doped layer
contacted by an s-wave superconductor (figure 1(e)). For sufficiently thin n-doped layer, the p-n junction
recombination region is in superconducting proximity [25, 30]. We assume that the proximity itself has been
established—as is usually assumed in the superconducting optoelectronics theory[1, 2] and has been
demonstrated experimentally [4]. The photonic structure in our proposal can be similar to that of edge-emitting
semiconductor laser diodes and amplifiers [31]. The light pulse can propagate horizontally—perpendicular to
the p-njunction and the current injection direction. Furthermore, we have considered multimode-photonic
state, constituted of a single transversal wave-guide mode and broad range of longitudinal modes accounting for
the short fs-scale pulses. In order to perform a full quantum-optical analysis of the ultrafast-pulse TPG, in our
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model the multimode photonic state is given in terms of coherent states on both inputs of the two-photon
process |Ph) o 3 gy %, )la,). This state is waveguided in the proximity region p-n junction (figure 1(e)),
where the superconducting gap is in the semiconductor conduction band with electrons in a BCS state, while the
valence band is in the normal state of holes (figure 1(d)). The Fermi level of the superconductor contact attached
to the n-type semiconductor is aligned with the conduction band of the semiconductor for effective electron
Cooper-pair injection. Therefore at the p-n interface, the proximity is induced by Cooper-pair injection from
the n-type contact side, and the radiative recombination is of normal holes and BCS correlated electrons [1]. By
performing perturbative analysis we calculate the one-photon and two-photon stimulated emission spectra, and
the corresponding TPG. Our model is based on a full BCS theory at finite temperatures, and it includes the BCS
ground state, as well as the quasiparticle excitations out of the ground state, described by the Bogoliubov
transformation:

—iExt,

V-k5) (Y]

. . . . . T
. is givenin terms of the quasiparticle operators v ,» % »

_ i iE
c,zo_(t) = el (yyet kt’y,t,g — SyVke

where an electron creation operator c,:r

fi, = e E= ,/52 (k) + A2, ¢, » k) =— —p, 2 Hn and y1,, are the electron quasi-Fermilevel

and hole qua51 Fermi level, respectively, m,,and m, the electron and hole masses, respectively, V,, the applied
voltage, E. the edge of the conduction band, 2A the superconducting gap, s, = 1(—1)foro = T (] )and
ur(vi) = {11 + (—1)¢,(k)/El/2 }'/2. The final state is the result of a light—matter coupling Hamiltonian
Hp = > 4.0 Big bk_q,0 ck,(,a; + H.c. operating on the initial state.

In terms of the BCS quasiparticle operators the light—matter coupling Hamiltonian, using natural units
(h=c=1)is:

Hy = 37> " Bhg, 4k Vo bk—g,084 — S0 _Bia, kY k.5 0k—q,00q, | + Hee, @)
k,o 9, 1,

where By 4 is the coupling energy, by , and ;. , are hole and BCS quasiparticle annihilation operators,
respectively, with crystal momentum k and spin o, and a; is the photon creation operator with momentum q.
The initial state of the system is given by | ;) = IPh)IFS)IBCS), where IPh) represents the multimode photonic
coherent state, |[FS) denotes the Fermi sea of holes in the valence band, and IBCS) is the electron superconducting
BCS state. The two-photon interactions are represented by two-vertex Feynman diagrams (figure 1). The Green
functions resulting from non-vanishing cc” —type terms in the superconducting state are represented by
double-arrowed electron propagators [32]. These Green functions allow pair emission through a single
connected second-order Feynman diagram, contrary to the disconnected pair of first-order single-electron
transitions. Using the interaction picture, the 1stand 2nd order contributions to the time evolution of the initial

stateare |y, (1)) *lf dt'H; (t')Ix;) and Iy, (2)) f dt’ f dt”H; (¢ Hi (t")1x;), respectively,
where the interaction picture Hamiltonian is given by H; (t) = elfo'H; eleO’ with Hj the unperturbed
Hamiltonian of BCS conduction band and a Fermi sea of holes in the valence band.

The transition amplitudes for the one-photon emission process and the TPE process are given by

AD = (x, (DIx, (D) = 71\/‘ dt’ {(x; (DH (k) A2 = (x; @), (2))
=— j; _dn L dy ( Xf‘(Z)lH(t3)H (t4)1x;), respectively, with

|Xﬁ,(1)> = Clez,(,q,o_(uk’yk’gbk_q],(,a;l — savk'yikjbk_qz,ga;fz)|Ph>|BCS>IFS> and
Xt @) = CEkkp gy W Voo Vo g = 50,V V 4o Uppon 8g) X

(U Ve bl,l,ma;1 — S Vk YV k5, Uprn q)IPh>IBCS>IFS>

Assuming that the Fermi-Dirac distributions f” “and wy, vy are slowly-varying on the scale of g, and
neglecting the dependence of B; on k (B; = B), the one-photon emission rate is:

lug (N + lag )2 (f1)?

+ Ivel*(N + lag, 2)2(1 — f,?)z (3)

RO — 16_7; ICi. BFY 6 (D (fF)?
N k.q

where N is the number of photonic modes, @ = w; — ¢, (k — @) — f,=w; — Eg — p, — p, — §,(k — q)
E, = E. + E, + €V,, E, the edge of the conduction band, w;, ¢,, ¢,are photon, hole, and electron energies
respectlvely, and |G, I? is the normalization constant. It is worthy to note that the normal one-photon behavior
can be obtained by neglecting the effects of superconductivity. This is equivalent to taking the limit A — 0 for
electron-like quasiparticles so that uy — 1, vy — 0and Ex — &, (k). This results in the normal-material based
emissionrate R = 16” GBIy, OO + layg, (D) (f')*. The explicit dependence of the rate on A

is given essentiallyby uy, vi where uy (vi) = {[1 + (—1)§, (k)/« /52 (k) + N2 ]/2 }'/2. Next, approximating the

summation over k momenta by integration, using a 2D state density of a thin proximity layer, the one-photon
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rateis:
Oy — 271, + pr,) | 1+ Q)N+ lag PY2(fE)? +
>, (N F lagP) |( = Q02N + lag, V(1 1)

R =G )
q

where Q, = (w; — Zﬂn)/\/(wq — 2[1,)* + A2 with © astep function, §, = w, — 2fi,,

Wy, = wg £ \/ (wq — 2f1,)* + A? and G a constant proportional to |BI*. A similar procedure is carried out to
calculate the one-photon absorption rate. The one-photon gain is given by ¢ = (v, N,,)"'dN,;,/dt, where v, is
the group Velocity,'NPh = layl? i§ th.e average photon number in a coherent state lcy) . The qua}ntity dN,y,/dt i§
the net photon emission rate which is given by R, — R, where R, and R, are the photon emission and absorption
rates, respectively. Therefore, the one-photon gain is:

(f; )2 (N + lag H*(1 + Qq)2(fg;)2 +
DN + lagP) [ (N + lag, (1 — Q)% ffg:)z
q

g = QZ@(% = 2, + 1)
vy XlagP (= fOP( lag P+ Q1 = f7)?
q —— "
Dolagl | 4 lag (1 = Q)2 = f7)?
L

)

This expression can be significantly simplified by taking the semiclassical approximation la,| > 1thus
neglecting the spontaneous emission terms compared to the stimulated ones. To further simplify, in the limit of
asingle-mode case at zero temperature (I' = 0) the gain is:

g = 2[9@% ~ 6Oy — 2iy + )1 qu]

— O(wg — 2f1,)(1 + Qq)2 ©

Ve

This one-photon gain, as expected, has no dependence on the seed intensity, and has a negligible dependence
on Asince A < 21, — wy. The step functions define alower cutoff E; andawidth of p,, + /ufl + A2,

A much richer behavior appears in the following calculation of the superconductivity-enhanced TPG. The
matrix element for the stimulated TPE in this case is given by:

(X; H (5)H (t)x;) = > C5:Bk, g, Bk, q, € €% Ipy Igs Incs @)
ki...kypq,...9,501...04

where Q; = w, — €, (ki — q;) —[i,, = wy, — Eg — p, —ft, — §p (k; — q;). We have distinguished, for the sake
of clarity, between the different contributions of the various parts of the expression. The first term is the photonic
term, given by:
1 tot
Ipy = > (ag,ag, | ag ag,a,,a4, > lag,)lag,) = Qspr + Qsst + Qrst 8)

2 _
2N N 9,9 URUF]

with Qspr, Qsst> Qs representing the spontaneous, singly-stimulated and fully-stimulated TPE transitions,
respectively (figure 1). More explicitly, these terms are:

QSPT = (6’11"13 6‘12"14 + 5']2"13 5‘11"]4) (9)
4 (N — DQspr (lag * 4 lag, ?)
st = N+ 6, af S0 0 S0 0 ot 8y 0 (10)
2N? = N[+ (0q,q,00q,0q, + 0,0, + 0g,q,00q Qg + Og,q, 0g g)
Xk
Qesr — 4 (Oq,9,0, + Oa,a,a, + Oq,a,a, + Oq,q,0,) g 0g g, g, (11
FST — > -

2 *
2N — N 6,11,,12 6’13”14 (aqsa’h)z + (QSPT + (N — 4)6q1’q2)q3’q4)|aq1 |2|O[q2 |2

Asit can be seen from equations (8)—(11), Qspr does not depend on the seed intensity, Qsgy is ¢ (a*)—
proportional to the seed intensity, and Qggr is ((a*)—proportional to the square of the seed intensity. A unique
property of two-photon processes and TPG in particular, is the possibility of employing interference of various
two-photon transition paths involving different spectral components of ultrafast pulses for coherent control of
the process [33]. Our results clearly demonstrate the possibility of coherent control in superconducting two-
photon gain based on such interference terms (equations (10), (11)). Next, we calculate the valence band hole
Fermi-sea, and conduction band electron BCS contributions:

prki—q, 601)04 6P2>k3—'13 602)03

Ies = (FSIb}

o
Ppoi b;pUz bks*qs»ffs bk4*q4,04|FS> = fifl fifz _ (12)

6P|)k3*q3 601)0'3 61’2»"4*‘14 5%04
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Figure 2. Cooper-pair based TPG spectra versus temperature T, with Ay = A(T = 0) for la,l ~ 400. The gain is given in units of
cm~!. The inset shows a slice of the gain spectra ata given T.

.
Iycs = (BCSIef , ¢ Chpor (1) iy, (14)IBCS) = wgy v i, Vi, Bk, —k, B3, Ok~

el (L= fOfE — L f)

X Sg, S . Y N , ; (13)
3 e—lEk3(t3*t4)(fkl(l _fk3) -1 _fkl)(l _fks))
Thus, the TPE rate is:
IC + L IesT P (fP)*
RO — 8T jgu__! & 1€+ Tt + TrstP(fe)
IN* =N 3 (I kg, EE qu,qz [C + Isst + Iest]
B B ny\2 n 1 __ fn 1 _ f£nyN2
x 6 + ) ~(f’<) —2f’1(2 f")+ (~ U (14)
(& — Er)? O — E} (4 + Ex)?
with Iy, Ipst the singly- and fully-stimulated emission terms (figures 1(b), (c)), respectively, which are
acquired from Qsst and Qs after summation, (4 = w, — €,(—k — q,) — fi, and
Q, = wy, — €p(k — q,) — [i,,. Approximating the sum over the momenta by integration, the rate is:
IC + Isst + Iest*(fF)* 2 (f8)? foa—=fh
RO = C, 1BIHY & (é) " e _yle e
ql’qZqu,qz [C + IssT + IFST] Q (Awlz — Q) Awlz - Q
(- fry
. (15)

_l’_ S
(Awyy + O)?

where O = (W, + wy, — 2/1,)* + 4%, ¢, = %(wa + wg, — 2f1,), Awyy = wy — wy, and C, C,con-
stants. This Cooper-pair based stimulated TPE rate attains a resonance as Awj, approaches €2 (figures 2, 3), it is
proportional to A? and hence vanishes for temperatures higher than the superconducting transition
temperature (T.) where A vanishes. A similar expression is evaluated for the absorption rate. Lastly, the TPG
can be calculated from the stimulated TPE rate (equation (15)) yielding:

[ Co PP (0 = Co P — [P — fE)*
(wa - qu - Q)Z
o Z(A)z N Ce P = fEP(F* = ColIP(f2) (1 = f)*
WAL (wg, = wg, + O)?
Co P (fE)* = Co P — £
2 n

n n(] — fr
O T LAY

(16)

where we have defined I, = C + Lt + I and 1% an equivalent expression for the absorption rate. C,, C, are
constants. Considering for simplicity a two-mode caseat T = 0 with la | >> 1:
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OQf1, — wg, + wg,) — O(wg, + wy, — 2fi,)

Q@ _ Cz |B|4IFST (é)2 (AQJ12 + Q)z (17)
lorg, 12 + lorg, 2L Q2 n OQfi, — wq, + wq) — Owy, + wq, — 2f1,)
(Awp, — Q)

This gain has a linear dependence on the seed intensity—similar to the case of semiconductor TPG without
superconductivity [20, 21], and has a very broad spectrum with finite gain from 0 to Ey + 11, + p1,, (for T = 0).
The spectra for finite temperatures are shown in figure 2.

We calculated the superconductivity-enhanced TPG, while taking into consideration the one-photon gain
and loss under various conditions. The spectral shape of the gain has two characteristic bandwidth scales, one
thatis sharp and narrow pertaining to a resonance of the virtual state in the second order process as shown in
figure 1(d), and another lesser in magnitude yet on a much broader scale. The spectral slice inset in figure 2
demonstrates this double-bandwidth shape of the gain spectra. Moreover, as the temperature approaches T, the
effects of superconductivity, with the corresponding resonance at A, disappear (figure 2). We also studied the
effect of carrier injection level on the TPG. It can be seen in figure 3 that for increasing carrier density (quasi-
Fermi level position) TPG increases and its spectrum becomes broader, with one-photon loss dominating the
high-energy end of the spectrum.

In the low temperature limit T — 0, and for a single-mode input with relatively high intensity la, | > 1,2
simple expression is obtained for the ratio between the one-photon and TPG:

2 2 _ 90
% e IBIZIanZ(%) ~ 1 - 6Cuy - 27,)] ~ )
g [0Qh, — w)O(wg — 271, + 11,) — Owg — 271, ]

where C = 4m,, (u, — A + ,/ui + A2 )/mp 1, [(wg — i, )2 + AZ?]. This expression is proportional to the seed
intensity and A?, and hence for moderately high intensities the superconductivity-enhanced TPG becomes
comparable to its one-photon equivalent. Using characteristic values of III-V semiconductors we estimate that
the TPG magnitude will approach its one-photon counterpart for lo I &~ 107 (figure 4), corresponding to pJ-
scale pulse energy. For ultrafast pulses the bandwidth can introduce some variance to the pulse energy.
Therefore, we estimate only the order of magnitude of the pulse energy

This result is several orders of magnitude lower than the typical values of pulse energies required to observe
TPG in semiconductors without superconductivity [21]. In principle in the extremely strong field limit
nonlinear optical interactions with field strengths on the scale of ionization field strengths (E, ~ 5 x 10" Vm™
[34]) could require non-perturbative modelling. However, in our calculations, the largest pulse energy
considered is on the pJ scale, which corresponds to intensities about eight orders of magnitude smaller than
ionization intensities

1
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3. Conclusion

In conclusion, we have shown that Cooper-pair recombination in semiconductor-superconductor structures
results in significant enhancement of ultrafast TPG. We developed a full quantum model of singly and fully-
stimulated TPE in superconductivity enhanced recombination in semiconductors, allowing transition-path
interference for coherent control applications. Furthermore, we have shown that at moderately high seed
intensities the TPG contribution becomes comparable to the one-photon gain.
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