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Observation of transient momentum-space interference during scattering of a condensate
from an optical barrier
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Scattering theory traditionally deals with the asymptotic behavior of a system far removed from the actual
scattering event. Here we present an experimental study of the one-dimensional scattering of a noninteracting
condensate of 87Rb atoms from a potential barrier in the nonasymptotic regime for which the collision dynamics
are still ongoing. We show that, for near-transparent barriers, there are two distinct transient scattering effects
that arise and dramatically change the momentum distribution during the collision: a deceleration of wave-packet
components in midcollision and an interference between incident and transmitted portions of the wave packet.
Both effects lead to the re-distribution of momenta giving rise to a rich interference pattern that can be used to
reconstruct the single-particle phase profile.
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Scattering is traditionally described asymptotically, con-
necting the initial and final scattering states while bypassing
the dynamics during the collision itself [1]. In typical particle
scattering experiments, measurements are performed long
after the collision, and thus, the asymptotic solutions provide
an accurate description of the observations. Yet, there are
circumstances in which the scattering cannot be described
asymptotically and knowledge of the full wave function is
required, for example, in understanding the quantum kinetics
of moderately dense gases [2,3]. Brouard and Muga [4,5]
theoretically studied the one-dimensional (1D) scattering of
a wave packet from a δ-function potential. They showed that,
during the collision with a repulsive potential, the momentum-
space wave function could exhibit dramatically different
features, for instance, the generation of high-momentum
components. This nonclassical momentum enhancement is
a consequence of the wave nature of matter in the spirit of
quantum reflection [6–8]—an effect that occurs when the
potential changes abruptly on the scale of the de Broglie
wavelength, irrespective of the sign of the change. However,
the effect described here is distinctly transient, manifesting
itself only during the scattering event and vanishing in the
asymptotic limits.

Over the past few decades, impressive advances in exper-
imental techniques have granted access to ever faster time
scales and lower energies, allowing for direct probes of the
nonasymptotic scattering regime. For example, ultrafast laser
pulses can now be used to probe subfemtosecond time scales,
providing time-resolved probes of electron dynamics [9]. In
parallel, atom cooling techniques [10–12] have matured and
now routinely produce samples in the nano-Kelvin regime
[13,14]. The scattering dynamics of these ultracold systems
occur on an easily accessible microsecond time scale, making
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them an ideal system for the investigation of nonasymptotic
scattering. Bose-Einstein condensates (BECs) of dilute gases
have been used extensively to observe matter-wave phenomena
[8,15,16]. Due to the relatively low densities, the interparticle
interactions are weak, allowing for clear observation of single-
particle quantum effects. Furthermore, the dynamic Stark
effect allows for the creation of nearly arbitrary potentials
with spatial features limited only by the wavelength of light
used to induce them [17] and can be modulated much faster
than the dynamics of the condensate [18]. Here we make use of
these advantages to experimentally study scattering of a matter
wave packet from an optically induced potential barrier in
the nonasymptotic regime. We observe the momentum-space
wave-function reshaping effect predicted by Brouard and
Muga and further show that scattering from a finite-sized
potential gives rise to a second effect due to the deceleration
of wave-packet components in midcollision. These transient
scattering effects are observed to result in a rich momentum-
space interference pattern.

At first glance, the predicted momentum redistribution and
enhancement of high momenta might be interpreted as a
spatial compression of the wave packet as it impinges upon
the barrier, resulting in a broadened momentum distribution.
Indeed, it has been shown that the enhancement increases
with the height of the barrier, saturating in the opaque
barrier limit [5]. However, Pérez Prieto et al. [19] later
showed that a much more significant momentum enhancement
unexpectedly occurs for wave packets with kinetic energy
well above the barrier height. They interpreted this effect as
an interference between incident and transmitted portions of
the wave packet. In the limit of a nearly transparent barrier,
the primary effect on the wave packet is to write a phase
shift. During the collision, half of the wave packet has yet
to reach the barrier, and half has been transmitted. Thus,
there exists a phase discontinuity dividing the incident and
transmitted components of the wave packet in midcollision
(Fig. 1 inset). This sharp spatial feature in the phase results in
destructive interference of the central momentum component
and constructive interference in the tails [20]. The net result
is a symmetrically broadened momentum distribution which
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FIG. 1. (Color online) Transient enhancement of momentum
during scattering with a δ-function barrier. Shown is the simulated
momentum distribution in the wave-packet center-of-mass frame long
before or after the collision (red dashed line) and during the collision
(blue solid line). Inset: Position-space distribution during scattering
(blue solid line) and phase-profile (red dashed line). The barrier height
has been chosen such that it results in a π -phase shift across the wave
packet.

exhibits nonclassical momentum enhancement and tails that
fall off as 1/k2 (Fig. 1). For an incident wave packet with linear
chirp, as would result from free expansion, the momentum
distribution during scattering exhibits a much richer structure.
In midcollision, the phase discontinuity is located at the
spatial center of the wave packet. Only the central momentum
components, predominantly located near the center of the
spatial wave packet, acquire the long momentum tails. The
high and low momentum components, which are spatially far
from the discontinuity, remain unaffected. The resulting mo-
mentum distribution displays rapid fringes due to interference

between the redistributed central momentum component and
components in the tails of the distribution [Fig. 2(a)].

For finite-width barriers, the interference effect is sig-
nificantly reduced. This reduction depends exponentially on
the product of the barrier width σy and the wave-packet
momentum width �k. In addition to the reduction in the
momentum enhancement, there is a secondary effect, which
is that a center-of-mass momentum is imparted. Components
of the wave packet in midcollision receive a net deceleration.
These components are effectively pushed to lower momenta,
resulting in interference between the incident and the pushed
components of the wave packet (Fig. 2). This breaks the
symmetry of the momentum distribution and is distinct from
the interference between the transmitted and the incident
components. For our typical experimental parameters σy�k ≈
4, the transmitted-incident (T-I) interference effect is strongly
suppressed, and the scattering is dominated by pushed-incident
(P-I) interference. However, since the latter only changes
the distribution of the slow-moving components of the wave
packet and the interference increases our sensitivity to small
amplitudes, it is still possible to unambiguously observe
the T-I interference effect on the fast-moving transmitted
components. An additional consequence of a finite-width
scattering potential is that the strict 2π -phase periodicity in
T-I interference, that would occur for a δ-function potential, is
washed out by the continuous range of phases written on the
wave packet.

It is important to emphasize the transient nature of both
T-I and P-I interference effects. For our implementation, the
barrier height is typically eight times smaller than the average
kinetic energy of the wave packet; there is no classical reflec-
tion and a probability of quantum reflection less than 10−13. Yet

0

0.05

0.1

|Ψ
 (

k)
|2

0

0.05

0.1

|Ψ
 (

k)
|2

0

0.05

0.1

|Ψ
 (

k)
|2

0

0.05

0.1

|Ψ
 (

k)
|2

−10 −5 0 5 10
0

0.05

0.1

|Ψ
 (

k)
|2

k (1/µm)
−10 −5 0 5 10
0

0.05

0.1

|Ψ
 (

k)
|2

k (1/µm)

FIG. 2. (Color online) Momentum-space interference during scattering for a linearly chirped wave packet with parameters ωy = 2π ×
450 Hz and tcol = 4 ms, respectively, defining the initial momentum width and chirp. Simulated momentum distributions in the center-of-mass
frame of the incident wave packet before or after the collision (red dashed line) and during the collision (blue solid line). The left column shows
the dependence on barrier width σy = 0, 1, and 2 μm from top to bottom. For a δ-function barrier, the transmitted-incident (T-I) interference
is dominant, creating a symmetric distribution. For a finite-width barrier, the pushed-incident (P-I) interference becomes dominant, breaking
the symmetry. The right column shows the effect of increasing the barrier height.

053634-2



OBSERVATION OF TRANSIENT MOMENTUM-SPACE . . . PHYSICAL REVIEW A 88, 053634 (2013)

even in this near-transparent barrier limit, there is a dramatic
modification of the momentum distribution during interaction
with the barrier, which afterwards vanishes, returning to the
original distribution. In contrast, the only classical effect would
be a temporary decrease in the momentum of the fraction of
atoms in midcollision at any given moment.

We prepare a Bose-Einstein condensate of 87Rb atoms in the
ground state of an optical dipole trap formed by the intersection
of two focused 980-nm beams (red detuned from the 780-nm
D2 transition) oriented in the horizontal x-z plane. The trap
is cylindrical with approximate radial and axial trapping
frequencies ωx = ωy = 2π × 300 and ωz = 2π × 100 Hz,
respectively. In this trap, we prepare nearly pure condensates
of about 105 atoms. After preparation, we abruptly turn off the
optical trap, dropping the atoms under gravity (y direction)
onto an optically induced barrier potential. The barrier is
positioned beneath our atoms such that the collision typically
occurs after tcol ∼ 4 ms of free fall during which the wave
packet acquires a linear chirp. The chirped wave packet then
collides with the barrier. To study the momentum distribution
during the collision, we abruptly turn the optical barrier off
within 20 μs, freezing out the dynamics of the collision. We
then perform a long time-of-flight (TOF) expansion, followed
by absorption imaging after a total time of ttot = 30 ms. This
TOF maps the momentum of the particles during the collision
to their final position such that the imaged position distribution
is representative of the momentum distribution of the atoms
during the collision.

The barrier potential is generated by a 780-nm beam
blue detuned from the 87Rb D2 transition by 150 GHz.
This beam is approximately Gaussian in shape with a large
aspect ratio and propagates along the x axis. The rms barrier
width along the direction of the wave-packet propagation is
σy = 1.1 μm. The beam has a size σz ∼ 10 μm transverse
to the wave-packet propagation and a Rayleigh range of
xR ∼ 20 μm. σz is comparable to the transverse size of the
expanding cloud at the time of collision. We broaden the
potential along z by rapidly scanning the position of the barrier
using an acousto-optic deflector (AOD), extending the length
of the barrier to ±60 μm. This scan occurs at 100 kHz and
is much faster than the motion of the atoms, resulting in a
time-averaged potential [18]. We tailor the AOD scanning
wave form to generate a time-averaged potential flat to within
1% of the barrier height, ensuring that the collision dynamics
are essentially one dimensional. The barrier height is typically
around kB × 1 μK, where kB is Boltzmann’s constant and
is chosen such that the effect of the barrier is to write a
typical phase shift of approximately 3π while remaining small
compared to the typical wave-packet center-of-mass kinetic
energy of kB × 8 μK acquired in free fall.

Note that, for an interacting system, such a phase imprinting
would result in soliton formation [21,22]. The effect studied
here is a single-particle interference effect. The repulsive
interparticle interactions in the system are only relevant during
the first millisecond of the experiment, driving the self-similar
expansion of the cloud and, thus, determining the momentum
distribution prior to collision. The mean-field energy rapidly
is converted to kinetic energy on a time scale of 1/ωy [23]. For
our typical experimental parameters, at the time of collision,
the condensate radial size has increased by a factor of 7, and
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FIG. 3. (Color online) Transient momentum-space interference
during a collision. Representative absorption images of a BEC after
collision with a barrier at tcol = 3.3 ms and TOF ttot = 30 ms. The
barrier height, expressed in terms of the phase shift imparted to fully
transmitted atoms, is increasing from left to right. The cloud is moving
downwards (+y) under the influence of gravity. The images have been
low-pass filtered in the transverse (z) direction for presentation.

the peak density has dropped by 2 orders of magnitude. Thus,
interactions during the collision itself are negligible. This has
been confirmed by comparing an interacting three-dimensional
Gross-Pitaevskii equation simulation to a noninteracting
Schrödinger equation simulation of the collision with matched
precollision momentum distributions.

We measure the condensate momentum distribution during
scattering for a variety of scattering parameters. Figures 3
and 4 show a representative set of absorption images and
the corresponding integrated 1D profiles for the precollision
expansion time of tcol = 3.3 ms and increasing the barrier
height. The barrier height is expressed in terms of the estimated
phase shift imparted to the fully transmitted atoms. As the
barrier height is increased, we observe the development of
a rich interference pattern, consistent with P-I interference
(see simulations in Fig. 5). For higher barriers, the central
momentum component is more strongly decelerated, thus,
increasing the range over which interference is observed. The
fringe pattern that develops is reflective of the momentum-
space phase profile of the condensate prior to collision. For
condensate expansion, we expect a quadratic phase profile [23]
and a fringe spacing that decreases linearly from the cloud
center. Note that our imaging system has a resolution of 3 μm,
reducing the fringe visibility near the edges of the distribution.

Given the finite barrier width, T-I interference is strongly
suppressed, and the scattering is dominated by P-I interference.
However, the latter effect is asymmetric, only affecting the
low-momentum side of the distribution; thus, T-I interference
can still be observed on the high-momentum side. In our
parameter range, the effect is most visible for large phase
curvatures, which is achieved with long precollision times.
Figure 6 shows a representative 1D profile (averaged over 20
images) for tcol = 6.3 ms and an estimated barrier phase shift
of 3.1π . The experimental profiles show excellent agreement
with our simulation, which accounts for the finite imaging
resolution and camera pixel size. Some jitter in the shot-to-shot
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FIG. 4. (Color online) Transient momentum-space interference during a collision with a barrier at tcol = 3.3 ms and total time-of-flight
expansion ttot = 30 ms. Integrated experimental 1D density profiles corresponding to images in Fig. 3.

position of the cloud may contribute to the reduced fringe visi-
bility in the averaged experimental profiles when compared to
simulation. At this precollision time, we begin to see T-I inter-
ference fringes on the high-momentum side. In principle, this
type of interference also results in momentum enhancement;
in our parameter regime, however, this effect is very small.
Although the T-I interference fringes are clearly observed, the
expected momentum enhancement signal is too small to be
quantitatively extracted from the experimental noise.

The observed momentum distributions during the collision
exhibit a rich structure, containing both amplitude and phase
information about the single-particle momentum-space wave
function prior to collision. Both T-I and P-I effects result

in interference between momentum components initially at
ki and scattered by the barrier at tcol to kf and unscattered
components which have momentum kf . The interference
depends on the relative phase accumulated along the respective
trajectories. By studying the fringe pattern, we can extract
the phase profile of the single-particle wave function. To
illustrate, we estimate the phase profile of our expanding
condensate (Fig. 7) by marking the maxima and minima of
each P-I interference feature in the observed profiles and
assigning a relative π -phase shift between adjacent features.
For condensate expansion, a quadratic phase profile with a
curvature that increases with the precollision time is expected
for both momentum- and position-space distributions [23]. The
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FIG. 5. (Color online) Gross-Pitaevskii equation simulation (including image resolution effects) for the experiments shown in Figs. 3 and
4, tcol = 3.3 and ttot = 30 ms.
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FIG. 6. (Color online) Evidence for transmitted-incident momentum-space interference for tcol = 6.3, ttot = 30 ms, and an estimated barrier
phase shift of 3.1π . (a) Sample experimental 1D profile (average of 20 images), and (b) simulation (including image resolution effects). Shown
are the density profiles for uncollided (thin red line) and collided clouds (thick blue line) and the difference between these profiles �. The
pushed-incident interference is visible on the low-momentum side (−y), whereas, the transmitted-incident interference is visible on the
high-momentum side (+y) around y = 50 μm.

position-space phase profile after TOF is φ(z) = αz2, where
α � m

2h̄ ( 1
ttot−tcol

− 1
tcol

). We find close agreement between α and
the phase curvature extracted from simulated data using the
above technique.

Due to the long 30-ms TOF, our cloud falls 4.4 mm under
the influence of gravity and expands to a size of 200 μm. As
a result, our ability to focus on the atom cloud center after the
TOF is limited to an accuracy of ±300 μm. Off-center imaging
results in distinct diffraction features and a general reduction

in extracted experimental fringe curvature from the expected
value. These imaging artifacts are well understood and are
entirely reproduced by our imaging simulations (performed
after data collection). Thus, we compare our extracted fringe
curvature to that predicted from our simulations for a range
of imaging planes from on-center to 300-μm off-center. Note
that the tcol = 6.3-ms data set where the T-I interference effect
is most visible (Fig. 6) is consistent with imaging on the cloud
center.
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FIG. 7. (Color online) Extracting the phase profile from experimental data. (a) Sample profile for tcol = 3.3 ms where each peak or trough
is marked and a relative π phase is assigned. (b) Each such phase profile is fitted to a quadratic. Sample data and fit curves for tcol = 6.3, 4.7,
and 2.6 ms. (c) The fitted phase curvatures are plotted against the precollision time. The thick black line indicates expected free-expansion
curvature α. The thin red lines indicate the curvature extracted from simulated data for imaging on the cloud center and increasingly off-center
(top to bottom; see text).
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The technique used here to reconstruct the expanding
condensate phase profile can be used for the measurement of
arbitrary single-particle phase profiles. This interferometric
approach bears some similarities to existing condensate
phase-profile reconstruction techniques [16,24]. In contrast
to these approaches, our technique, in principle, allows for
single-shot reconstruction, provided the scattering potential is
sharp enough. For sharp scattering potentials, T-I interference
dominates, symmetrically scattering the central momentum
component across the cloud. Thus, the central momentum
component acts like a local oscillator, beating against the other
momentum components of the condensate simultaneously.
On the other hand, for broad scattering potentials, the P-I
interference dominates. Assuming a symmetric phase profile,
it is still possible to extract the full phase information as
we have shown for condensate expansion. When using P-I
interference, detailed knowledge of the scattering potential and

its effect on the wave packet is required to accurately recover
the relative phase between momentum components. Lastly, we
note that, since the fringe visibility is linked to the off-diagonal
elements of the density matrix, this technique can be extended
to characterize the development of many-body correlations.
This association between single-particle interference visibility
and many-body correlations has been used in the past, for
example, in studying the superfluid to Mott insulator
transition [25].
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