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The response of a particle in a periodic potential to an applied force is commonly described by an
effective mass, which accounts for the detailed interaction between the particle and the surrounding
potential. Using a Bose-Einstein condensate of 87Rb atoms initially in the ground band of an optical lattice,
we experimentally show that the initial response of a particle to an applied force is in fact characterized by
the bare mass. Subsequently, the particle response undergoes rapid oscillations and only over time scales
that are long compared to those of the interband dynamics is the effective mass observed to be an
appropriate description. Our results elucidate the role of the effective mass on short time scales, which is
relevant for example in the interaction of few-cycle laser pulses with dielectric and semiconductor
materials.
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The concept of the effective mass is ubiquitous in solid
state physics, allowing for a simple semiclassical treatment
of the response of a particle in a solid to an external force.
The interaction with the surrounding potential dresses the
particle with an effective mass, distinctly different from its
bare mass, and allows for a description of the particle’s
dynamics based on Newton’s second law [1]:

hai ¼ F
m�

NðkÞ
; (1)

where hai is the average acceleration of the particle under
an applied force F, and m�

NðkÞ is the effective mass for a
particle with momentum k and band index N. The effective
mass is inversely related to the curvature of the dispersion
relation, and in one dimension is given by

m�
NðkÞ ¼ ℏ2

�
d2

dk2
ENðkÞ

�−1
; (2)

where ENðkÞ is the energy of the state, and ℏ is Planck’s
constant. The modern description of electronic conduc-
tion in solids is intimately tied to the concept of the
effective mass.
However, a direct application of Ehrenfest’s theorem [2]

shows that, for a particle in one band, the acceleration due
to an applied force is F=m0, wherem0 is the bare mass, and
not F=m�. In fact, a response characterized by m� requires
contributions from Bloch states in neighbouring bands,
although these amplitudes may be small [3,4]. The multi-
band states that result in the effective mass behavior are
naturally achieved when the force is applied slowly
compared to the time associated with the band-gap fre-
quency [5,6]. In contrast, when the force is abruptly applied

the wave function initially remains unchanged, yielding a
response described by m0. Over time, the external force
inevitably couples the initial and neighbouring bands,
resulting in an acceleration which itself oscillates around
F=m� (see Fig. 1). In the presence of interband dephasing
these oscillations die out. The steady state however con-
tains small contributions from neighbouring bands, as
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FIG. 1 (color online). Illustration of effective mass dynamics.
(a) Lattice dispersion relation showing the time evolution of an
initially single-band wave packet under an abruptly applied force
F. (b) The corresponding acceleration hai. Over time scales that
are long compared to one over the band-gap frequency, the
acceleration is characterized by the lattice effective mass m� and
leads to Bloch oscillations (dashed black line). However the
initial response of the single-band state is characterized by the
bare mass m0 (bare mass response shown by green dash-dotted
line), and then rapidly oscillates around the usual effective mass
behaviour.
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imposed by the force, such that the total acceleration tends
to F=m� [7]. We use the term “dynamical mass” to refer to
the mass associated with this transient response of the
particle, and “effective mass dynamics” to refer to its
variation in time. See Supplemental Material [8] for further
details on the theoretical description.
In typical solid state systems, the fast time scales of the

transient oscillations and dephasing effects have thus far
prohibited observation of the effective mass dynamics.
However, recent advances in attosecond science now allow
for the generation of few-cycle, near-infrared laser pulses
[9,10]. The study of the effects of these pulses on solid
targets has garnered significant interest for ultrafast current
control [11,12] and high-harmonic generation [13–15]. As
the drive frequency approaches the band-gap frequency, the
usual approximation of lattice effective mass response for
conduction electrons is expected to become invalid, and it
has been suggested that this breakdown will lead to
decreased efficiency for high-harmonic generation in the
subcycle regime [16]. Ultracold atoms in optical lattices
have recently been suggested as a system in which the
deviation from effective mass behavior is readily accessible
[4]. The inherent length and time scales of ultracold atoms
make them an ideal system to observe long-range, quantum
coherent phenomena that occur in condensed matter
physics but may be difficult to observe in the solid state
[5,17–24].
In this Letter we report on the first observation of the

effective mass dynamics of ultracold atoms in an optical
lattice. By abruptly applying an external force, we show
that the particle’s initial response is characterized by the
bare mass and is indifferent to the presence of the lattice.
Subsequently, the response exhibits rapid oscillations at the
band-gap frequency, and slow Bloch oscillations which are
characterized by the usual effective mass.
We perform our experiment with a Bose-Einstein

condensate of 87Rb prepared in a hybrid optical and
magnetic trap [25]. This trap is formed by the overlap of
a single-beam optical dipole trap with a quadruople
magnetic trap. The resulting potential has cylindrical
symmetry with radial and axial harmonic trapping frequen-
cies fr ¼ 80 Hz and fz ¼ 20 Hz, respectively. In this trap
we produce nearly pure condensates of about 105 atoms.
We then ramp up a laser standing-wave pattern over
100 ms, adiabatically loading our atoms into the ground
state of a one-dimensional optical lattice with lattice
constant d ¼ λ=2 ¼ 532 nm. The total potential has the
form

U ¼ ULcos2ðkrzÞ − FðtÞz; (3)

where UL is the lattice depth, and FðtÞ the applied force
(initially zero). The photon wave vector kr ¼ 2π=λ sets
characteristic momentum and energy scales, ℏkr and
Er ¼ ℏ2k2r=2m0, respectively. We express the lattice depth

in terms of the recoil energy via the dimensionless
parameter s ¼ UL=Er. The lattice potential generated in
this way is essentially defect-free, and thus avoids the
complications due to scattering that arise in typical solid
state systems. The peak atomic density in the lattice is
less than 3 × 1013 atoms=cm3. In this regime interparticle
interactions have been shown to be negligible up to a minor
correction to the lattice depth [17]. We estimate the lattice
depth based on the first-order diffraction amplitude for the
k ¼ 0 Bloch state. Comparing to a simulation of the Gross-
Pitaevskii equation (GPE), we find that the dynamics occur
as if the lattice had a depth Ueff < UL. Our results are thus
compared to a single-particle analysis at lattice depth Ueff ,
which for our typical densities, represents a correction of
less than 10%. For our typical lattice depths and forces we
can neglect interband Landau-Zener tunneling [26].
To initiate the effective mass dynamics, we abruptly shift

the center of the magnetic trap, exerting a force F on our
atoms along z that is essentially spatially uniform over the
extent of our 20 μm sample. This shift is performed in
20 μs, and is much faster than the typical time scale
corresponding to the band gaps in our experiment (around
100 μs). The effective mass dynamics result in oscillations
of the average acceleration hai, and thus the average
velocity hvi. After a variable evolution time in the lattice
we abruptly switch off all trapping potentials. The abrupt
turn-off of the lattice preserves the momentum distribution,
which we measure by imaging after time-of-flight (TOF)
expansion.
Figure 2 shows the results of a typical experimental run.

The free-space momentum distribution [Figs. 2(a) and 2(b)]
is a diffraction pattern consisting of components separated
by the recoil momentum 2ℏkr (the recoil velocity is
vr ¼ ℏkr=m0 ¼ 4.3 μm=ms). The amplitude and velocity
of each peak are extracted from a fit of four equally spaced,
equal-width Gaussians [Figs. 2(c) and 2(d)]. The average
velocity of the particles in the lattice as a function of time is
then reconstructed from a weighted sum of these peaks
[Fig. 2(e)]. We observe a clear oscillation in the average
velocity on a millisecond time scale, consistent with Bloch
oscillations [5,6,17,27]. This phenomenon arises due to
the long-range, interwell coherence of the condensate and
occurs at a frequency ωB ¼ Fd=ℏ [28,29]. In addition to
the Bloch oscillation we observe much faster oscillations
on a 100 μs time scale, consistent with dynamics at the
band-gap frequency. This is observed to arise due to a
modulation of the relative amplitudes of the diffracted
momentum components. In the tight-binding limit, these
dynamics may be thought of in terms of the intrawell wave
packet oscillations which occur at the band-gap frequency
in parallel with the slower, long-range Bloch oscillations
(see Supplemental Material [8]). The corresponding
GPE simulation is shown in Figs. 2(f)–2(h) for s ¼ 10
and F=m0 ¼ 12.3 μm=ms2. These parameters were chosen
to match the frequency of the fast and slow oscillations of
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the data, respectively, and are in agreement with the
measured parameters within experimental uncertainty.
Under the abruptly applied force, the initially single-

band state will acquire amplitudes in adjacent bands over
time. The coupling to these additional bands provides
contributions to the average acceleration that will oscillate
at the respective energy differences. For narrow momentum
width wave packets and times shortly after the force is
applied, the acceleration is given by [3,4]

haðtÞi ¼ F
m0

�
m0

m�
N
þ
X
n≠N

2

m0

p2
nN

ΔnN
cosðΔnNt=ℏÞ

�
; (4)

where ΔnN ¼ En − EN and pnN are the energy gap and
momentummatrix element between Bloch states in bands n
and N, respectively. At t ¼ 0 the contributions to hai are in
phase and the initial acceleration is that of a particle with
bare mass, as expected from Ehrenfest’s theorem, and can
be seen in Eq. (4) by applying the effective mass sum rule
[3]. For a particle initially in the ground band (N ¼ 1), the
coupling is primarily to the first excited band (n ¼ 2), and
the effective mass dynamics in this two-band case are
governed entirely by the band gap Δ21. As the particle
traverses the Brillouin zone during a Bloch cycle, the band
gap changes, resulting in a variation in the amplitude and
frequency of the effective mass oscillation. These complex
oscillations are the effective mass dynamics.
To study the dynamics, we fit the average velocity to

the sum of two sinusoids, explicitly separating the Bloch
oscillation from the effective mass dynamics,

vðtÞ ¼ Ad sinðωdt − ϕdÞ þ AB sinðωBt − ϕBÞ; (5)

where A is the amplitude, ω the frequency, and ϕ the
phase of the oscillations. The subscripts d and B indicate
parameters for the effective mass oscillation and Bloch
oscillation, respectively. Due to the variation of the band
gap across the Brillouin zone, this fitting function is not
strictly correct at times comparable to the Bloch period.
Equation (5) is a compromise between capturing as many
of the features of the dynamics as possible while still
obtaining reliable fits. When extracting the effective mass
oscillation we fit only the first 300 μs of data (roughly three
periods of the fast oscillation) to obtain an accurate estimate
of the effective mass dynamics near the center of the
band (k ¼ 0).
Figure 3 plots the dependence of these time scales on

the applied force F and lattice depth s. The frequency of the
slow oscillation, fB, is observed to scale linearly with
the applied force [Fig. 3(a), lower], as expected for Bloch
oscillations. We also plot this frequency, scaled by the
applied force, against lattice depth [Fig. 3(b), upper] to
show that the frequency is independent of lattice depth. The
fast oscillation frequency, fd, increases with lattice depth
[Fig. 3(b), lower] and thus the band gap, but is independent
of applied force [Fig. 3(a) upper]. The fitted frequency is
compared to the calculated band gap at k ¼ 0 and k ¼ kr,
representing the range of frequencies the particle samples
as it undergoes a complete Bloch oscillation. A more direct
comparison to the data is made by fitting Eq. (5) to the first
300 μs of data generated from a GPE simulation, in the
same way as we fit to the experimental data.
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FIG. 2 (color online). Observation of effective mass dynamics. s ¼ 9.4 and F=m0 ¼ 11.7 μm=ms2. (a) Composite of absorption
images. Each row is a slice of an image taken after variable evolution time in the lattice (4 μs resolution) and 20 ms TOF. Color scale:
from blue to red, indicates increasing optical density. (b) Example absorption image, and one-dimensional profile and fit. (c)–(e) The
velocity and amplitude of each peak, and the reconstructed average velocity of the distribution. The gap in the data at 650 μs due to poor
condensate preparation during these runs. The solid black curve is the result of low-pass filtering this data, serving as a guide to the eye.
(f)–(h) Corresponding GPE simulation (see text).
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From the average velocity fits we extract the initial
response to the applied force (Fig. 4). The external force is
applied within 20 μs after a 20 μs delay. This delay is
accounted for by the phase in the sinusoids of our fitting
function. The initial response is evaluated at time
t0 ¼ ϕd=ωd, when the phase of the fast oscillation is zero.
The effective mass theorem Eq. (1) describes the response

of a particle to a force over time scales that are long
compared to the interband dynamics; thus, we estimate this
effective mass from the Bloch oscillation alone. Since the
band curvature decreases with increasing lattice depth, the
effective mass increases. However, the full response con-
tains contributions from both the slow Bloch oscillations
and the fast effective mass dynamics. The dynamical mass
is estimated from the sum of these contributions, and at t0 is
observed to be consistent with the bare mass, independent
of lattice depth.
In deep lattices (s > 10), the deduced effective mass

begins to deviate from the predictions. This is partially
due to the growth of high-order diffraction peaks in the
momentum distribution which lie beyond our imaging
window. Neglecting these peaks causes us to overestimate
the amplitude of the Bloch oscillation, and thus under-
estimate the effective mass. Despite this correction, we find
that our measured amplitude for Bloch oscillation is larger
than expected (see sample data and simulation in Fig. 2),
leading to an estimated effective mass smaller than
expected. This effect is only prominent in the deep lattice
regime, whereas the bulk of our data are for lattice depths of
s < 10. The deviation in AB may be a band-mapping effect
due to the finite turn-off time of the optical lattice [23,24],
which is expected to be more prominent in the deep lattice
regime. Note that this has a minimal impact on the estimate
of the dynamical mass since the dominant contribution in
the deep lattice regime is from the effective mass dynamics.
The error bars are given by the fit uncertainties, where the
main contribution in the effective mass uncertainty comes
from fitting the long time scale Bloch oscillation. In the
presence of excited band decay and interband dephasing,
the effective mass dynamics are expected to reduce to the
behavior described by the usual effective mass. In our
system, this can occur due to interparticle scattering
[30,31]. Within the parameter range probed, we do not
expect to see dephasing of the effective mass oscillation.
To our knowledge, the effective mass dynamics explored

in this work have never before been observed, despite their
initial prediction nearly 60 years ago. Whereas past work
on Bloch oscillations focused on time scales that are long
compared to that of the interband dynamics, our work
clarifies the role of the effective mass on short time scales,
requiring comparatively fast excitation and fine temporal
resolution. These results shed experimental light on one of
the most fundamental aspects of motion in a lattice, and
should be directly relevant to a broad range of experiments
on ultrafast dynamics in a variety of systems, for example
in the control of electron dynamics in a solid on a
subfemtosecond time scale [4,10–14].
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FIG. 3 (color online). (a) Variation of dynamical mass fre-
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The dynamical mass frequency, normalized by Δ, is expected to
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Bloch frequency, normalized by F=m0, is expected to be a
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