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Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum
information raises the question of what types of compression are feasible for quantum data, where it is
especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present
a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into
exponentially fewer qubits. We then experimentally implement our algorithm, compressing three photonic
qubits into two. This protocol sheds light on the subtle differences between quantum and classical
information. Furthermore, since data compression stores all of the available information about the quantum
state in fewer physical qubits, it could allow for a vast reduction in the amount of quantummemory required
to store a quantum ensemble, making even today’s limited quantum memories far more powerful than
previously recognized.
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The amount of information that can be extracted from a
classical system is precisely the same as the amount of
information required for a complete description of the
system’s state. The same is not true quantum mechanically;
to fully describe the state of a single quantum bit (qubit)
would require an infinite amount of information, although
no more than one (classical) bit of information can ever be
extracted from a measurement of its quantum state. Such
fundamental differences between quantum and classical
mechanics open up the possibility of new kinds of data
compression with no classical analogue. In quantum
mechanics an ensemble of identically prepared quantum
systems provides much more information than a single
copy—this is not the case classically, where the informa-
tion encoded in a single system’s state can be accessed
repeatedly. Although quantum mechanically we cannot
compress all of the information contained in an ensemble
of systems down to a single quantum copy, we can achieve
an exponential savings. In this Letter, we show how this
exponential savings can be realized using the quantum
Schur-Weyl transform [1,2], which can compress an ensem-
ble of N identically prepared qubits into a memory of size
log2½N þ 1� qubits. We show how the protocol can be made
practical in an optical setting, experimentally implementing
a three-qubit quantum circuit to compress a three-qubit
ensemble into the state of two qubits. To characterize this
circuit, we show that we can perform measurements on
the two compressed qubits, and still extract as much
information as we would have been able to given all three
original qubits. Given our ability to extract information
about measurements in multiple bases, we can conclude that

the compressed state faithfully encodes the “quantum
information content” of the original ensemble. Our results
demonstrate that quantummemories can store exponentially
more information about a quantum state than would nor-
mally be expected for the number of physical qubits that the
memory can hold.
From the point of view of estimation theory, a quantum

state is never fully knowable, just as a classical probability
distribution is not fully knowable (both would require
infinite resources). Hence, for our purposes, a quantum
state is best thought of as an object that allows one to make
testable predictions about the statistics of potential mea-
surements done on a large ensemble of identically prepared
systems. Thus “quantum state estimation” is really the task
of making predictions about the expectation values for
observables that might be measured in the future. Consider
for instance estimating the spin projection of a qubit along a
particular direction, given a fixed number of identically
prepared qubits. The best strategy is simply to measure the
spin along the direction of interest on each copy and draw
conclusions as one would do classically. Clearly, having
more copies allows for a better estimate. If the measure-
ment of interest is unknown, however, the standard
approach is to reconstruct a density matrix [3], containing
enough information to estimate any expectation value. This
has the disadvantage that no single estimate can ever make
optimal use of all of the information [4]. For instance, in
single-qubit tomography one most commonly splits an
initial ensemble of identical qubits into three groups, and
measures X̂ on all the members of one group, Ŷ on another,
and Ẑ on the last. But if, for example, one later wishes to
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estimate hẐi (the expectation value of the spin along Ẑ),
the measurements of X̂ and Ŷ give no useful information,
and two thirds of the measurements have been wasted. In
fact, on average, the estimate will be only as accurate as if
about one third of the ensemble had been measured; this is
the price one pays for the generality of tomography: one
has information about all three axes, but only one third as
much information about each (the situation becomes more
dire in higher dimensions). A better estimate of the spin
along any specific direction could be made if one held on to
the initial ensemble—requiring a quantum memory—until
one knew the measurement of interest. Thus, storing all of
the qubits would enable the most accurate predictions about
any single measurement. In the classical case, an identically
prepared ensemble of bits is highly redundant, so that
ideally the information can be compressed down to one bit.
This redundancy, along with the challenge of building
quantum memories, motivates the question: how many
qubits must we store to achieve the same prediction
accuracy that is possible with the initial ensemble?
The dimension of the Hilbert space of an N-qubit system

grows exponentially in the number of qubits, that is, as 2N .
However, the state of an ensemble ofN identically prepared
(pure) qubits is the tensor product ofN identical pure states,
and lives in the (N þ 1)-dimensional fully symmetric
subspace. Such N-qubit states can be described using N þ
1 rather than 2N dimensions because the vast majority of the
information in a general multiqubit state describes permu-
tations, which are irrelevant for an ensemble of identical
qubits. The remainder of the information describes the
effective angular momentum of the multiqubit state, and is
the only information relevant to estimating expectation
values of single-qubit observables. Thus it is natural to ask
if the initial N-qubit ensemble can be mapped reversibly
(unitarily) onto exponentially fewer (log2½Nþ1�) qubits. In
fact, this mapping of the computational basis into a new
basis, separating the permutation from the angular momen-
tum information, is well understood as the quantum
Schur-Weyl transform (QSWT) [1], and has been theoreti-
cally proposed for use in a variety of different applications
[2,5–9]. In this Letter we develop a practical scheme for
implementing the QSWT, and experimentally demonstrate
it with photonic qubits, compressing a three-qubit ensemble
into two qubits. (The compression of a quantum ensemble
is very different from, and should not be confused with,
quantum source coding [10,11].)
A three-qubit QSWTwill compress an ensemble of three

qubits into two (log2½3þ 1�) qubits, so that one qubit can be
discarded without information loss. A quantum circuit
implementing the three-qubit QSWT is shown in Fig. 1(a).
In this circuit, the two single-qubit unitaries, Û1 and Û2,
are defined so that Û1ð

ffiffiffiffiffiffiffiffiffiffiffið2=3Þp j0iþ ffiffiffiffiffiffiffiffiffiffiffið1=3Þp j1iÞ¼j0i,
Û2ð

ffiffiffiffiffiffiffiffiffiffiffið1=3Þp j0i þ ffiffiffiffiffiffiffiffiffiffiffið2=3Þp j1iÞ ¼ j0i and Û2Û1 ¼ X̂. It is
straightforward to show that if the three input qubits

are prepared in jψi ¼ αj0i þ βj1i the output will be trans-
formed into jϕi1;2j0i3, where

jϕi1;2 ¼ α3j00i þ
ffiffiffi

3
p

α2βj01i þ
ffiffiffi

3
p

αβ2j10i þ β3j11i:
ð1Þ

Since the third qubit is always in j0i this circuit unitarily
maps all of the information onto the first two qubits. (Such
circuits can be efficiently made for any value ofN, requiring
one to keep only log2½N þ 1� qubits [1,2].) In the case of
identical pure-state qubits the final two disentangling gates
can be implemented usingmeasurement and feedforward, as
shown in Fig. 1(b) [12]. Now qubit 3 is measured and an
operation is performed on the first two qubits which depends
on this result. This simplification produces jϕi1;2, and thus
performs as well as the full QSWT [13].
To understand why the compression of an ensemble of

three identical qubits into two does not lose information,
consider how one would estimate hẐi (which we will refer
to as Ztrue, the “true value” of this expectation value) with
and without quantum data compression. In short, without
compression each qubit is measured in the same basis and
an estimate is calculated from a tally of the number of
spin-up and spin-down measurement results. This tally is
an integer between 0 and N, and can therefore be written
as a (log2½N þ 1�)-bit string. Explicitly, Ẑ is measured on
the three qubits, and Ztrue is estimated directly from the
individual outcomes Zi¼�1=2 as Zdirect¼ðZ1þZ2þZ3Þ=
3. Zdirect has four possible values, given by the number
of spin-up measurement results, which can be 3, 2, 1, or 0,
corresponding to maximum-likelihood estimates of
Zdirect ¼ fþ1=2;þ1=6;−1=6;−1=2g, respectively. Since
the permutation information (which qubits came out
spin-up or spin-down) is irrelevant there are N þ 1 (four)
rather than 2N (eight) outcomes. The QSWT removes
this irrelevant permutation information, compressing an

FIG. 1 (color online). (a) Quantum Schur-Weyl transform. A
three-qubit quantum Schur-Weyl transform. Û1 and Û2 are
unitaries (whose detailed descriptions can be found in the main
text) which are controlled by the upper qubit; the H is a controlled
Hadamard and the other two-qubit gates are CNOTs, while the
three-qubit gate is a Toffoli. (b) Simplified circuit. The shaded
area labeled 2 can be viewed as a two-qubit unitary gate, Â, acting
on the first two qubits which is controlled by the third qubit. C is a
two-qubit unitary gate which is applied (or not) based on a
measurement of qubit 3. The numbered boxes correspond to the
areas in Fig. 2 which show the physical implementation of the
circuit elements.
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(N þ 1)-valued outcome from a (2N)-into an (N þ 1)-
dimensional system. Quantum data compression amounts
to encoding this information directly in (log2½N þ 1�)
qubits, discarding the rest; so as long as the coherence
between all such states is preserved, the resulting quantum
state faithfully preserves the statistics of such tallies in all
bases. With quantum data compression, Ztrue is estimated
by measuring both compressed qubits and computing
Zcomp¼ð2Z1þZ2Þ=3 (which can take the same four values
as Zdirect). To quantify the quality of the two estimates,
Zdirect and Zcomp, we compare their statistical variances
(since the expectation values of both estimates are equal to
Ztrue, their variances are equivalent to their mean-squared
error). For the single-qubit state αj0i þ βj1i, both Zdirect

and Zcomp have variances of jαj2jβj2=3 (as expected, given
that spin measurements obey binomial statistics). These
identical statistics indicate that there is just as much
information about Ztrue in the two compressed qubits as
there is in the three uncompressed qubits. More impor-
tantly, measurements on the compressed state jϕi1;2 can be
used to estimate any single-qubit operator with the same
statistical uncertainty as a direct measurement [13]. It is in
this sense that the two-qubit state jϕi1;2 carries as much
information about jψi as the three-qubit input jψi⊗3.
To demonstrate this protocol experimentally, we use

three qubits, encoded in the path and polarization degrees
of freedom of two photons [14,15]. Such hybrid quantum
systems, using multiple degrees of freedom of photons,
have proven very useful for demonstrating quantum pro-
tocols [16–18], testing fundamental issues in quantum
mechanics, [19,20], and simplifying quantum logic gates
[21,22]. In the circuit of Fig. 1(b), qubit 1 is encoded in the
polarization of photon 1, qubit 2 is encoded in an additional
path degree of freedom of the same photon, and qubit 3 is
encoded in the polarization of a second photon. After the
circuit is completed, the information of all three qubits is
stored in the first two logical qubits, both encoded in
photon 1, allowing us to discard the second photon entirely.
A sketch of our optical implementation is shown in Fig. 2,
and explained in the Supplemental Material [13]. The two
compressed qubits are encoded in the path and polarization
of photon 1; to perform the postselective disentanglement,
measurements of these two qubits are postselected on a
measurement of photon 2. This corresponds to a coinci-
dence event between a measurement on photon 2 signaling
jH þ iVi= ffiffiffi

2
p

and any of the four detectors for photon
1. There are four detectors because there are two possible
path outcomes and two possible polarization outcomes.
These coincidence events correspond to four different
estimates of Ztrue: HP0 ¼ j00i ⇒ Zcomp ¼ þ1=2, HP1 ¼
j01i ⇒ Zcomp ¼ þ1=6, VP0 ¼ j10i ⇒ Zcomp ¼ −1=6,
or VP1 ¼ j11i ⇒ Zcomp ¼ −1=2.
To test the performance of our circuit, the compressed

systemwasmeasured and a number of representative single-
qubit observables were estimated. For each measurement,

the two qubits were found in one of four states, correspond-
ing to expectation-value estimates of þ1=2;þ1=6;−1=6, or
−1=2. Since a single measurement does not yield informa-
tion about the statistical performance of our circuit, we ran
the circuit many times for the same input state and final
measurement. The number of runs was typically M ≈ 500.
For each run, Ŝ (either X̂, Ŷ, or Ẑ) was measured on the
output and the spin expectation value was estimated as
Scomp ¼ ð2S1 þ S2Þ=3, then the average of Scomp over runs
was calculated. This entire process formed a single trial,
and was repeated about 250 times. The resulting distribu-
tions of the averages of Scomp are plotted in Figs. 3(a)–3(c)
for Ŝ ¼ X̂, Ŷ, and Ẑ with the initial single-qubit state
cosð2θÞj0i þ sinð2θÞj1i and θ ¼ 13.5°. If each of the M
measurements encodes the information of three qubits
(as we expect) the distribution should have a variance
given by the single-qubit variance ½V1 ¼ cos2ð2θÞsin2ð2θÞ�
divided by the total number of qubits sampled: 3M, three
times the number of runs in each trial. This prediction is
shown in blue on Figs. 3(a)–3(c). On the other hand, a
measurement made on two independent qubits would
exhibit a variance of V1=ð2MÞ, 1.5 times larger; this
distribution is shown in red for comparison. The narrower
blue curve, describing the behavior of three qubits, is a
much better fit to our observed data than the red curve,
indicating that the amount of information extractable from
the two compressed qubits is close to the full information
present in the three original qubits.
To further quantify the performance of our compression

circuit, we measure the “single-shot” distributions of Xcomp,
Ycomp, and Zcomp. To do this we again prepare each of the
three input qubits in cosð2θÞj0i þ sinð2θÞj1i, run our

FIG. 2 (color online). Optical Implementation. (a)–(b) State
preparation and data compression. Two photons, generated via
spontaneous parametric down-conversion (SPDC), are used to
encode three qubits. Qubit 1 is encoded in the polarization of
photon 1, qubit 2 in its path degree-of-freedom (the logical paths
are labeled P0 and P1), and qubit 3 in the polarization of photon 2
(initially entangled with an additional path degree of freedom of
photon 1). After data compression, only photon 1 remains,
encoding a path and polarization qubit. (c)–(d) Measuring the
compressed qubits. Any single-qubit measurement can be made
on the compressed state in two steps by first setting the basis (c),
and then measuring Ẑ (d). The Ẑ measurement has four out-
comes: HP1, VP1, HP0, and VP1 [where H (V) stands for
horizontal (vertical) polarization]. The areas numbered 1–3
correspond to circuit elements shown in Fig. 1(b).
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circuit, measure one of the observables X̂, Ŷ, or Ẑ (each
measurement results in an estimate of þ1=2;þ1=6;−1=6,
or −1=2) and bin the results. For each observable the
circuit was run approximately 105 times. The resulting
normalized distributions are plotted in Figs. 3(d)–3(f) for
θ ¼ 13.5°. We observe very good agreement between our
experimental data (dark bars) and theory (larger light bars).
Next, we vary the input states, preparing a range of θ
values, and measure the variance of the resulting single-
shot distributions of Xcomp, Ycomp, and Zcomp for each input
state. These experimentally measured variances are the
circles, plotted versus θ, in Figs. 4(a)–4(c). The curves in
Figs. 4(a)–4(c) are theory corresponding to the variance of
two independent qubits V1=2 (red dashed curve) and three
independent qubits V1=3 (blue solid curve). For all but two
data points in the X̂ measurement (discussed in [13]), our
experimental data agree very well with the three-qubit
variance. In addition to these three observables, one would
ideally quantify the variance averaged over all possible
measurements. Such a measurement would indicate how
much information could be extracted about arbitrary mea-
surements. Conveniently, for a given state, this average
measurement variance is the same as simply averaging the
variances of X̂, Ŷ, and Ẑ. [That is to say that the uniformly
distributed discrete subensemble fX̂; Ŷ; Ẑg is an averaging
set for the SO(3) uniformly (Haar) distributed superensem-
ble fŜðθ;ϕÞg for variance [13,23]]. The resulting averaged
variance is plotted in Fig. 4(d). This clearly demonstrates
that our circuit compresses three qubits into two, and we can
conclude that all of the compressed states we tested encode
the information about any single-qubit measurement.

So far we have imagined that, given three qubits and a
two-qubit quantum memory, our strategy in the absence of
compression would be to store two of the qubits and discard
the third. This measurement scheme has a variance 1.5
times larger than we obtain with compression (red curve in
Fig. 4). A better approach would be to measure the third
qubit before discarding it. The classical bit obtained would
provide extra information and could be combined with the
subsequent measurement of the two stored qubits in the
correct basis, yielding an improved estimate of the single-
qubit spin. Any compression algorithm should be com-
pared to such a strategy. We analyze this protocol in [13];
the result is the dotted grey curve in Fig. 4. Our compres-
sion scheme outperforms even this improved protocol.
Finally, it is worth mentioning that our techniques

could be useful beyond compressing sets of identical input
states. For instance, one could also exponentially compress
any permutationally invariant pure state. Permutationally
invariant states include several entangled states which have
been shown to be invaluable for quantum communication
and quantum computing [24–26], including GHZ states
[27,28] and W states [29]. Many other applications of
the QSWT, outside of compression, exist [2,5–9], and for
some applications our feedforward simplification performs
optimally. Given the exponential reduction in the size of the
required quantum memory, and the many applications of
the QSWT, circuits such as the one we have demonstrated
hold great promise for future quantum computing and
communication architectures.

FIG. 4 (color online). Measurement variances for various input
states. The solid blue lines are the theoretical variances resulting
from performing a measurement on three independent qubits (and
thus our two compressed qubits), the dashed red lines are for two
independent qubits, the grey dashed lines are the theoretical
variance when two independent qubits are measured optimally
and a random measurement is performed on a third qubit, and the
circles are the variances which we observe when experimentally
measuring the two compressed qubits. (a)–(c) By sending in
various input states, parameterized as cos 2θj0i þ sin 2θj1i, we
see that the two compressed qubits demonstrate the statistics of
three independent qubits for Ẑ, Ŷ, and X̂ measurements. (d) Aver-
aging the above variances yields the variance averaged over all
possible measurements.

FIG. 3 (color online). Sample raw data for an input state
cosð2θÞj0i þ sinð2θÞj1i, for θ ¼ 13.5°. (a)–(c) Histograms of
estimates the spin along Ẑ, Ŷ, and X̂, afterM trials (defined in the
text) of the data compression circuit. The bars are experimentally
measured data, and the blue (red) curve is a normal distribution of
width V1=3M (V1=2M) normalized to have the same area as the
experimental histogram, where V1 is the single-qubit variance.
(d)–(f) The experimentally observed probabilities for measuring
the two qubits and finding them in j00i, j01i, j10i, or j11i for Ẑ,
Ŷ, and X̂ measurements. The dark blue bars are the experimen-
tally measured counts, normalized by the total number of counts,
and the light bars are the theoretically predicted results.
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