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A laser pulse, several meV red detuned from the excitonic line of a quantum well, has been shown to
induce an almost instantaneous and rigid shift of the lower and upper polariton branches. Here we
demonstrate that through this shift ultrafast all-optical control of the polariton population in a semi-
conductor microcavity should be achievable. In the proposed setup, a Stark field is used to bring the lower
polariton branch in or out of resonance with a quasiresonant continuous-wave laser, thereby favoring or
inhibiting the injection of polaritons into the cavity. Moreover, we show that this technique allows for the
implementation of optical switches with extremely high repetition rates.
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Systems made of quantum wells embedded in semi-
conductor microcavities, where light and matter are strongly
coupled, provide a versatile area for the study of fundamental
physics and new states of matter such as out-of-equilibrium
polariton condensates. Because of the strong nonlinear
interaction between polaritons, they also have great potential
for the implementation of next-generation all-optical com-
putational technologies. Moreover, the very short lifetime of
cavity polaritons can, in principle, guarantee extremely fast
operation rates. For these reasons, in recent years significant
efforts have been devoted to the dynamical control of
polaritonic systems, and several proposals have been made
to implement switches, spin switches, transistors, and
resonant tunneling diodes on cavity-polariton systems [1–9].
The general idea underlying all of these proposals is to

use polariton-polariton interactions to control the blueshift
of the lower polariton branch directly with the driving laser
and, in this way, to manipulate the number of polaritons in a
microcavity. The main disadvantage of this technique is
that when the duration of the laser pulses used to trigger the
desired operations is in the subpicosecond regime, the
corresponding bandwidth is of the order of the Rabi
splitting of the system. Therefore, the effect of short pulses
is not only to inject polaritons but also exciton reservoirs
with relatively long lifetimes that relax into polaritons and
considerably decrease the repetition rates at which polar-
iton devices can work. The slowing down of the system
dynamics severely limits the interest in devices based on
polariton-polariton interaction blue shift since their perfor-
mances do not overcome those attainable in other systems.
Instead, the idea underlying the present work is to control

the energy of the polariton branches using the Stark shift
due to a laser far red detuned from the excitonic line. The
far red detuned laser, in fact, cannot excite reservoirs of
long-lived particles and ensures an ultrafast control of the

dynamics of the system. Recently, pump-probe experiments
have shown that the Stark effect can be used to shift both
the lower polariton (LP) and upper polariton (UP) branches
almost rigidly [10]. In this Letter, we propose a new setup
and use the Stark shift to implement polariton switches. We
show that with this technique it is theoretically possible to
overcome the previous limitations.
In the proposed setup, a continuous-wave (cw) and

quasiresonant laser injects polaritons into the microcavity
and a Stark field is used to control the energy difference
between the injecting laser and the LP branch. Once the
parameters of the injecting laser (frequency, angle of inci-
dence on the microcavity, and intensity) are fixed, the Stark
field is used to take the lower polariton branch in or out of
resonance with the frequency of the injecting laser, thereby
increasing or decreasing the number of polaritons in the
system, respectively. Here, two cases are addressed: first, the
steady-state case, in which the laser intensities are changed
adiabatically, and second, the case in which a rapid change of
the Stark field intensity, in the subpicosecond range, is used
to implement an ultrafast all-optical polariton switch. When
the Stark field takes the LP branch into resonance with the
injecting laser, polaritons efficiently enter into the cavity, and
a bright “on” state (corresponding to a high transmission
from the cavity) can be defined in contrast to a dark “off”
state (corresponding to a LP branch and an injecting laser out
of resonance and to a low transmission from the cavity).
We describe the system of a quantum well embedded in a

semiconductor microcavity by means of a two-component
wave function where the excitonic field of the quantum
well (ψX) is strongly coupled to the photonic field confined
in the microcavity (ψC) through the vacuum Rabi coupling
ΩR ¼ dXC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωC=ℏϵ0V

p
between a dipole with matrix

element dXC and the vacuum field in the cavity with
volume V. The dynamics and steady state of the system
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are modeled by means of the generalized Gross-Pitaevskii
equation [11,12],

iℏ∂t

�
ψX

ψC

�
¼

�
0

F

�
þ
�
Ĥ0 þ

�
gXjψXj2 0

0 0

���
ψX

ψC

�
;

Ĥ0 ¼ ℏ

�
ω0
X − iκX ΩR=2

ΩR=2 ωC − iκC

�
: (1)

Here, a cw injection laser field (IN), nearly resonant with the
LP branch [F ¼ ℏ

ffiffiffiffiffiffiffiffi
2κC

p
fðrÞeiðkIN·r−ωINtÞ], injects polaritons

with wave vector kIN and frequency ωIN. Throughout the
Letter, spatiallyhomogeneouspumpsfðrÞ ¼ f are assumed,
along with a flat exciton dispersion ω0

X and a quadratic
cavity dispersion ωCðkÞ ¼ ω0

C − ðℏ2k2=mCÞ, with
mC ¼ 2.3 × 10−5m0, where m0 is the electron mass. The
vacuumRabi frequency is set to 10.0meV, and κX and κC are
the excitonic and photonic decay rates. The exciton-exciton
interactionstrengthgX isof theorderof40 μeV μm2 [13], and
for the sake of generality, we rescale the fields ψX;C →
ψX;C

ffiffiffiffiffi
gX

p
and the pump field f → f

ffiffiffiffiffi
gX

p
. For the implemen-

tation of the proposed setup, a value of gX of 40 μeV μm2

implies powers of the quasiresonant laser in the range of
100mWfor a spot of100 × 100 μm2. Throughout theLetter,
the zero energy is set to the bare exciton frequency and the
exciton-photon detuning is taken to be equal to zero
[ω0

X ¼ ωCðk ¼ 0Þ]. Because of the Rabi coupling ΩR, the
two eigenmodes of Ĥ0 are the LP and UP branches:

ELP;UPðkÞ ¼
ℏ
2

�
ω0
X þ ωCðkÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

R þ ½ω0
X − ωCðkÞ�2

q �
:

(2)

The effect of a Stark field coupled to a quantum well
exciton embedded in a microcavity can be fully described
by a three-dimensional Hamiltonian including the excitonic
and photonic components and the nonresonant Stark pump:

H ¼ ℏ

0
B@

ω0
X ΩR=2 Ωp=2

ΩR=2 ωCðkÞ 0

Ωp=2 0 ωp

1
CA; (3)

where the decay rates have been omitted for the sake of
clarity, and where ℏωp ¼ −50 meV (below the excitonic
line) is the frequency of the Stark laser andΩp ¼ dXpjεpj is
the Rabi coupling between the exciton and the Stark field,
with dipole matrix element dXp and electric field εp. The
full diagonalization of Eq. (3) gives two new blueshifted LP
and UP modes since the Stark frequency is red detuned
with respect to the excitonic frequency. As shown in
Fig. 1(a), for ℏΩp ¼ 20 meV the two dressed states are
blueshifted by about 2.5 meV with respect to the bare LP
and UP, at k ¼ 0. For weak Stark intensities, it has been
shown [14] that the dressed polariton modes are well
approximated by the polariton modes obtained from
Eq. (2) with the excitonic line blueshifted as

ωXðΩp;ωpÞ ¼
1

2

�
ω0
X þ ωp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0

X − ωpÞ2 þ Ω2
p

q �
:

(4)

This approximation, valid for blueshifts smaller than
about 1 meV, considerably simplifies the analytical treatment
of the system and will be adopted throughout the rest of this
Letter. In order to understand the underlying mechanism
governing the system, its steady-state stable solutions are
evaluated following the same perturbative Bogoliubov-like
analysis already used for resonantly pumped polaritons in
Refs. [11,12,15]. In the present case, however, the excitonic
energy is a function of the parameters of the Stark field as
described in Eq. (4). Within this approach the homogeneous
profile of the pump determines the spatially homogeneous

stationary states ψ ð0Þ
X;Ce

−iðωINt−kIN·rÞ of the exciton and pho-
ton, by means of the mean-field equations,

0 ¼
�
ωXðΩp;ωpÞ − ωIN − iκX þ gX

ℏ
jψ ð0Þ

X j2
�
ψ ð0Þ
X

þΩR

2
ψ ð0Þ
C ;

f
ffiffiffiffiffiffiffiffi
2κC

p
¼ −½ωCðkINÞ − ωIN − iκC�ψ ð0Þ

C −ΩR

2
ψ ð0Þ
X : (5)

In order to evaluate the stability of the solutions of
Eq. (5), fluctuations around the mean-field state are
introduced and both exciton and photon fields are ex-
panded above their mean-field homogeneous stationary
states as ψX;Cðr; tÞ ¼ e−iωINt½eikIN·rψ ð0Þ

X;C þ δψX;Cðr; tÞ�. As
has been shown [11,15], the fluctuations above the
stationary state can be rewritten in terms of particlelike
(uX;C) and holelike (vX;C) excitations: δψX;Cðr; tÞ ¼P

kðe−iωteikruX;C;k þ eiωte−iðk−2kINÞrvX;C;kÞ, and the sta-
bility of the system obtained studying the imaginary part
of their spectrum [15]. The spectrum needed for this evalu-
ation is obtained simply by solving the eigenvalue equation:
½ðωþ ωINÞI − L�ð uX;k uC;k vX;k vC;k ÞT ¼ 0, where I
is the identity matrix and L is the matrix

FIG. 1 (color online). (a) LP and UP branches as a function of
the wave vector kx with ky ¼ 0. The bare case (solid black line) is
compared with the dressed case obtained fully diagonalizing
Eq. (3) with ℏΩp ¼ 15 meV (dotted brown line). (b) Polariton
density as a function of the quasiresonant injecting laser intensity
f when kIN ¼ 0 μm−1 and Δ ¼ 0.7 meV. The stable solutions of
the systems are represented for three Stark fields ℏΩp ¼ 0.0, 6.0
and 10.0 meV (circles, triangles, and squares) for linewidths
ℏκC ¼ ℏκX ¼ 0.10 meV. The brown curves indicate the unstable
solutions of the system.
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The stability curve of the system, in the case of two cw
laser fields, is plotted in Fig. 1(b) as a function of the
strength of the quasiresonant pump and for three different
values of the Stark field. Without lack of generality, here
and in the following, the frequency of the quasiresonant
injecting laser is assumed to be slightly blue detuned with
respect to the LP mode when both laser intensities are
vanishing: Δ ¼ ωIN − ELPðkINÞ > 0. This choice, in fact,
allows for the study of both the bistable and the optical
limiter regimes. Finally, for the sake of generality, here and
in the following, we will plot the polariton density jψLPj2
multiplied by the polariton-polariton interaction constant
gLP, using the relations gLP ¼ gX=4 and ψLP ¼
ð1= ffiffiffi

2
p ÞðψX − ψCÞ valid for kIN ¼ 0. We will refer to

the resulting quantity (the mean field energy gLPjψLPj2)
simply as polariton density. In Fig. 1(b), two features can be
noticed. First, the width of the bistable region decreases
until it disappears above a critical Stark intensity. This
decrease is related to the fact that the width of the bistable
region is proportional to the detuning between the injecting
laser and the LP branch at f ¼ 0, and this detuning
decreases for higher Stark fields. Second, when the system
is highly populated (upper part of the stability curve), the
number of polaritons in the cavity for fixed intensity f is
lower for stronger Stark fields. This can be understood
considering that the number of polaritons in the cavity
when the LP branch is in resonance with the injecting laser
is proportional to the detuning between the injecting laser
and the bare LP branch. The effect of the Stark field is to
decrease this detuning by independently dressing the LP
branch, and therefore the number of polaritons in the “on”
state must be smaller.
Still in the steady-state case, in order to get better insight

into the effect of the Stark field, instead of fixing Ωp and
changing f, it is possible to study the stability of the system
in the opposite way by fixing the injecting laser intensity f
and changing the Stark intensity Ωp. We study this in two
cases: weak and strong intensities of the quasiresonant
injecting laser, plotted in Figs. 2(a) and 2(b), respectively.
As will be explained below, these two cases correspond to
two kinds of switches that can be implemented using the
Stark effect.
In the first case few polaritons are present in the cavity

when Ωp ¼ 0 since the injecting laser is weak and Δ > 0,
and, therefore, it is possible to define an “off” state for the
corresponding switch. When Ωp is increased, the LP
branch shifts toward higher energies until it becomes

resonant with the injecting laser, at a given value
Ωp ¼ Ωon

p . At this point, polaritons are efficiently injected
into the cavity and the switch turns “on.” Now, if Ωp is kept
fixed at Ωon

p , the switch remains in the “on” state; if,
instead, Ωp is decreased or further increased, the switch
turns “off” since the LP and the injecting laser are no longer
in resonance. This behavior is clearly visible in the peaklike
shape of the polariton density plotted as a function of Ωp in
Fig. 2(a). As also shown in Fig. 2(a), the switching-on
intensity Ωon

p increases with higher detuning Δ of the
injecting laser with respect to the bare LP branch (curves
with different symbols). This is because higher Ωp are
needed to blueshift the LP to higher values and to reach the
frequency of the injecting laser. The shifts considered here,
between 0.3 and 0.7 meV, have been experimentally
achieved for values of the Stark pump fluence between
0.75 and 2.0 mJ=cm2, therefore confirming the feasibility
of the proposed switches [10]. Note that shifts of this order
imply a change between 0.5% and 1.0% of the effective
Rabi splitting due to the increased detuning between the
exciton and the cavity modes. This justifies the approxi-
mation that we have made of taking a Rabi splitting
constant.

FIG. 2 (color online). Polariton density as a function of the
Stark field intensity Ωp. The injecting laser is taken to have
kIN ¼ 0 μm−1 and the three cases (black circles, red squares,
and green triangles) correspond to Δ ¼ 0.3, 0.5 and 0.7 meV
[from left to right in (a) and from bottom to top in (b)]. (a) First
class of switches with injecting laser intensity f

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2κCgX

p ¼
0.075; 0.130 meV3=2 (filled and empty symbols). (b) Second
class of switches with injecting laser intensity f

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2κCgX

p ¼
0.25; 0.30 meV3=2 (filled and empty symbols). For Δ ¼ 0.5
and 0.7 states at low density are present in (b) since for these
sets of parameters the system displays bistability at Ωp ¼ 0. The
linewidths are ℏκC ¼ ℏκX ¼ 0.10 meV. Note that in the Δ ¼ 0.3
case no low-density stable solutions are available at lowΩp since,
in this case, the intensities f considered are above the bistability
threshold.
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At this point it is worth noting two things. First, since
the injecting laser intensity f is weak, the peak density of
the “on” state is weakly dependent on the initial detuning,
as when the LP and the injecting laser are in resonance,
the number of polaritons that are injected into the cavity
depends only on f and on the polariton lifetime. Second,
the Ωon

p at which the polariton intensity peaks shifts
slightly toward lower values when the pump intensity f
is increased [change from filled to empty symbols in
Fig. 2(a)]. This can be understood by observing that the
LP branch is shifted by both the Stark field and the
polariton population in the cavity. Therefore, if the polar-
iton density is higher, the LP is in resonance with the
injecting laser at smaller Stark intensities.
In the second case, when the injecting laser is strong,

the corresponding switch, contrary to the first case, lies in
an “on” state when Ωp ¼ 0 and is turned “off” at high
Stark field intensities. As before, the frequency of the
injecting laser is quasiresonant and blue detuned (Δ > 0)
from the bare LP branch but, in this case, the pump
intensity f is strong enough to blueshift the LP branch into
resonance. As shown in Fig. 2(b), when Ωp increases, the
switch is turned “off” since, due to the Stark field, the LP
branch is taken out of resonance with the injecting laser.
When Ωp is decreased back to zero, the polariton branch
is shifted back into resonance with the injecting laser and
the switch turns “on” again. While in the previous case the
effect of the Stark field was to bring the LP from values
below the energy of the injecting laser into resonance with
it, here the device works in exactly the opposite way: the
LP branch starts in resonance with the injecting laser and
the Stark field takes it out of resonance. As for the first
class of devices, the switching intensity (Ωoff

p in this case
rather than Ωon

p ) is higher for higher detunings Δ, since the
polariton branches have to be shifted more. However,
unlike the previous case, here the peak intensity of the
“on” state depends strongly on the detuning Δ [curves
with different symbols and colors in Fig. 2(b)] since it is
the detuning that determines the number of polaritons that
the quasiresonant laser has to inject into the cavity in order
to keep the LP dressed and in resonance. It is also worth
noting that in this case, once the intensity f is sufficiently
high to sustain the “on” state at Ωp ¼ 0, the intensity of
the “on” state depends only weakly on a further increase
of f since the system is in an optical limiter regime
(curves with filled and empty symbols).
Finally, we have studied the dynamics of the system for

the first class of switches described above, by numerically
solving the radial component of the Gross-Pitaevskii
equation (note that, due to the circular symmetry of the
infinite and homogenous system, the radial component of
the wave function carries all the information needed for
the full solution of the problem). Figure 3 shows the
response of a system, initially in its steady state, after the
arrival of a Gaussian (in time) Stark pulse (σt ¼ 1.0 ps),

for three different polariton lifetimes. The arrival of
the Stark pulse (gray solid line in Fig. 3) triggers the
blueshift of the LP branch toward the resonance with the
cw laser, thereby enhancing the polariton population.
After the end of the Stark pulse, the polariton population
decreases back to its original steady-state value, displaying
fast oscillations with a period of about 8 ps that corre-
sponds to the detuning (Δ ¼ 0.5 meV) between the
injecting laser and the bare LP branch. These oscillations
are the same as those displayed by the system when a laser
field is suddenly turned “on” (steplike) on an empty
microcavity, and their duration is proportional to the
polariton lifetime. While the switching “on” of the device
is determined by the rate at which photons are trans-
formed into polaritons (the Rabi frequency), the switching
“off” is determined by the polariton lifetime since the
system goes back to its initial condition as polaritons decay.
Therefore, longer polariton lifetimes (curve with black
circles), slowing down the process of restoring of the
initial condition, decrease the repetition rate at which the
device can work. On the other hand, longer lifetimes allow
for more efficient polariton injection, and yield higher
polariton densities in the “on” state. This is a principal
figure of merit for switches since higher brightness ratios
(the ratio between the population of the state “on” and the
population of the state “off”) lead to better device perfor-
mance. Following this discussion, let us note that the
increase of the Rabi splitting, due to the nonzero detuning
between the exciton and the cavity, makes the switching
“on” of the device even faster; therefore, our results can be
considered as lower bounds for the effective repetition rate
of the switching operation.
In conclusion, we have shown that a Stark field far red

detuned from the excitonic resonance of a semiconductor

FIG. 3 (color online). Timeevolutionof thepolaritonpopulation in
the cavity after the arrival of a Stark pulse (schematically represented
by the gray line) with values normalized to the population before
the arrival of the pulse. The curves with green triangles, red squares,
and black circles correspond respectively to plariton lifetimes of
2=ðκC þ κXÞ ¼ 3.3, 4.4, and 6.6 ps. The detuning between the cw
laser and the LP branch is Δ ¼ 0.5 meV, the cw pump intensity
is f

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2κCgX

p ¼ 0.13 meV3=2, and the Stark intensity is ℏΩp ¼
20 meV.
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microcavity can control the number of polaritons injected
into the cavity by a quasiresonant cw laser. In this way,
two classes of switches can be defined depending on
whether the “on” state corresponds to low or high Stark
field intensities. Interestingly, we have also demonstrated
that the switch between the “on” and “off” states can be
performed with repetition rates never before reached in
these systems. In fact, the injection of a polariton is
limited solely by the vacuum Rabi frequency, while the
resetting of the initial condition depends only on the
time needed for polaritons to decay. This technique not
only allows for the implementation of switches with
high modulation depth, but may also be used to study
the response of a polaritonic fluid to fast control
fields.
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