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While there is a rigorously proven relationship about uncertainties intrinsic to any quantum system,

often referred to as ‘‘Heisenberg’s uncertainty principle,’’ Heisenberg originally formulated his ideas in

terms of a relationship between the precision of a measurement and the disturbance it must create.

Although this latter relationship is not rigorously proven, it is commonly believed (and taught) as an

aspect of the broader uncertainty principle. Here, we experimentally observe a violation of Heisenberg’s

‘‘measurement-disturbance relationship’’, using weak measurements to characterize a quantum system

before and after it interacts with a measurement apparatus. Our experiment implements a 2010 proposal of

Lund and Wiseman to confirm a revised measurement-disturbance relationship derived by Ozawa in 2003.

Its results have broad implications for the foundations of quantum mechanics and for practical issues in

quantum measurement.
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The Heisenberg uncertainty principle is one of the cor-
nerstones of quantum mechanics. In his original paper on
the subject, Heisenberg wrote, ‘‘At the instant of time when
the position is determined, that is, at the instant when the
photon is scattered by the electron, the electron undergoes
a discontinuous change in momentum. This change is the
greater the smaller the wavelength of the light employed,
i.e., the more exact the determination of the position’’ [1].
Here, Heisenberg was following Einstein’s example and
attempting to base a new physical theory only on observ-
able quantities, that is, on the results of measurements. The
modern version of the uncertainty principle proved in our
textbooks today, however, deals not with the precision of a
measurement and the disturbance it introduces, but with
the intrinsic uncertainty any quantum state must possess,
regardless of what measurement (if any) is performed
[2–4]. These two readings of the uncertainty principle are
typically taught side-by-side, although only the modern
one is given rigorous proof. It has been shown that the
original formulation is not only less general than the
modern one—it is in fact mathematically incorrect [5].
Recently, Ozawa proved a revised, universally valid, rela-
tionship between precision and disturbance [6], which was
indirectly validated in [7]. Here, using tools developed for
linear-optical quantum computing to implement a proposal
due to Lund and Wiseman [8], we provide the first direct
experimental characterization of the precision and distur-
bance arising from a measurement, violating Heisenberg’s
original relationship.

In general, measuring one observable (such as position,
q) will, according to quantum mechanics, induce a random
disturbance in the complementary observable (in this case
momentum, p). Heisenberg proposed, and it is widely
believed, that the product of the measurement precision,
�ðqÞ, and the magnitude of the induced disturbance, �ðpÞ,

must satisfy �ðqÞ�ðpÞ � h, where h is Planck’s constant.
This idea was at the crux of the Bohr-Einstein debate [9],
and the role of momentum disturbance in destroying
interference has remained a subject of heated discussion
[10–12]. Recently, the study of uncertainty relations in
general has been a topic of growing interest, specifically
in the setting of quantum information and quantum cryp-
tography, where it is fundamental to the security of certain
protocols [13,14]. The relationship commonly referred to
as the Heisenberg uncertainty principle (HUP)—in fact
proved later by Weyl [4], Kennard [3], and Robertson
[2]—refers not to the precision and disturbance of a mea-
surement, but to the uncertainties intrinsic in the quantum
state. The latter can be quantified by the standard deviation

�Â ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hÂ2i � hÂi2
q

, which is independent of any specific

measurement. This relationship, generalized for arbitrary

observables Â and B̂, reads

�Â�B̂ � 1
2jh½Â; B̂�ij: (1)

This form has been experimentally verified in many set-
tings [15], and is uncontroversial. The corresponding gen-
eralization of Heisenberg’s original measurement-
disturbance relationship (MDR) would read

�ðÂÞ�ðB̂Þ � 1
2jh½Â; B̂�ij: (2)

This equation has been proven to be formally incorrect [5].
Recently, Ozawa proved that the correct form of the MDR
in fact reads [6]

�ðÂÞ�ðB̂Þ þ �ðÂÞ�B̂þ �ðB̂Þ�Â � 1
2jh½Â; B̂�ij: (3)

Because of the two additional terms on the left-hand side,
this inequality may be satisfied even when Heisenberg’s
MDR is violated.
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Experimentally observing a violation of Heisenberg’s
original MDR requires measuring the disturbance and
precision of a measurement apparatus (MA). While clas-
sically measuring the disturbance is straightforward—it

simply requires knowing the value of an observable, B̂,
before and after the MA—quantum mechanically it seems
impossible. Quantum mechanics dictates that any attempt

to measure B̂ before the MA must disturb B̂ (unless the

system is already in an eigenstate of B̂); as we shall discuss
later, it may also change the state in such a way that the
right-hand side (RHS) of Heisenberg’s inequality is modi-
fied as well. Because of these difficulties the disturbance,
as described here, has been claimed to be experimentally
inaccessible [16]. A recent experiment has indirectly tested
Ozawa’s new MDR [7], using a method also proposed
by Ozawa [17]. Rather than directly characterizing the
effects of an individual measurement, this work checked
the consistency of Ozawa’s theory by carrying out a set
of measurements from which the disturbance could be
inferred through tomographic means [18]; there has been
some discussion on the arXiv site as to the validity of this
approach [18–21]. In contrast, Lund and Wiseman showed
that if the system is weakly measured [22,23] before the
MA [Fig. 1(a)] the precision and disturbance can be
directly observed in the resulting weak values [8]. Here
we present an experimental realization of this proposal,
directly measuring the precision of an MA and its resulting
disturbance, and demonstrate a clear violation of
Heisenberg’s MDR.

To understand the definitions of the precision and dis-
turbance we first describe our implementation of a variable-
strength measurement. A variable-strength measurement
can be realized as an interaction between the system and
a probe followed by a strong measurement of the probe [24]
[shaded area of Fig. 1(a)]. The system and probe become
entangled through the interaction, disturbing the system,
such that measuring the probe will yield information about

the state of system. We define the disturbance as the root

mean squared (rms) difference between the value of B̂ on
the system before and after the MA, while the precision is

the RMS difference between the value of Â on the system

before the interaction and the value of Â read out on the
probe. Lund and Wiseman showed these rms differences
can be directly obtained from a weak measurement on the
system before the MA, post-selected on a projective mea-
surement on either the probe or system afterwards [8].
Specifically, they showed that the precision and distur-
bance for discrete variables is simply related to the weak-

valued probabilities of Â and B̂ changing, PWVð�ÂÞ and
PWVð�B̂Þ, via

�ðÂÞ2 ¼ ��Âð�ÂÞ2PWVð�ÂÞ; (4)

�ðB̂Þ2 ¼ ��B̂ð�B̂Þ2PWVð�B̂Þ: (5)

By taking our system to be the polarization of a single
photon we can demonstrate a violation of Heisenberg’s
precision limit by measuring one polarization component,

Ẑ, and observing the resulting disturbance imparted to

another, X̂. Here, X̂, Ŷ and Ẑ are the different polarization
components of the photon; we use the convention that their
eigenvalues are�1. For these observables, the bound [RHS
of Eqs. (2) and (3)] of both Heisenberg and Ozawa’s

precision limits is jhŶij. To facilitate the demonstration of
a violation of Heisenberg’s MDR, we make this bound as
large as possible by preparing the system in the state

ðjHi þ ijViÞ= ffiffiffi

2
p

, so that jhŶij ¼ 1. In this state, the un-

certainties are �X̂ ¼ �Ẑ ¼ 1, which satisfy Heisenberg’s
uncertainty principle [Eq. (1)], as they must. On the other

hand, a measurement of �Ẑ can be made arbitrarily pre-

cise. Now, even if the Z precision, �ðẐÞ, approaches zero
the X disturbance, �ðX̂Þ, to X̂ can only be as large as

ffiffiffi

2
p

, so
that their product can fall below 1, violating Heisenberg’s
MDR. Note that attempting the same violation with the

Heisenberg uncertainty principle, by setting �Ẑ to zero,
requires that the system is prepared in either jHi or jVi, in
which case the bound, jhŶij, must also go to zero, so that
Eq. (1) is trivially satisfied.

We can measure Ẑ of a single photon, by coupling it to a
probe system with a quantum logic gate [25] [shaded
region of Fig. 1(b)], implemented in additional path de-
grees of freedom of the photon [26]. We use this technique
to implement both the weak measurement and the MA.
Current linear-optical quantum gates are reliant on post-
selection, which makes them prone to error [27]. We
circumvent this problem, making use of ideas from the
one-way model of quantum computing to implement the
quantum circuit of Fig. 1(b) [28]. To enable successive
CNOT gates between the system and the two probes we first

make a ‘‘2-qubit line cluster’’ in the polarization of two
photons.

FIG. 1 (color online). The weak measurement proposal of
Lund and Wiseman [8]. (a) A general method for measuring
the precision and disturbance of any system. The system is
weakly measured before the measurement apparatus and then
strongly measured afterwards. (b) A quantum circuit which can
be used to measure the precision and disturbance of X̂ and Ẑ for a
qubit system.
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Experimentally, we generate entangled 2-photon states
of the form �jHHi þ �jVVi, using a spontaneous para-
metric down-conversion source in the ‘‘sandwich-
configuration’’ [29]. Each crystal is 1 mm of BBO, cut
for type-I phase matching. We can set � and � by setting
the pump polarization with quarter- and half-wave plates.
The pump beam is centered at 404 nm, with a power of
500 mW, generating down-converted photons at 808 nm.
The pump is generated by frequency doubling a femto-
second Ti:sapphire laser, which is centered at 808 nm,
using a 2 mm long crystal of BBO. The down-converted
photons are coupled into single-mode fiber before being
sent to the rest of the experiment. We observe approxi-
mately 15 000 entangled pairs a second, with 12% coupling
efficiency, directly in the fiber. When coupling the light
into multimode fiber after the interferometers, we measure
about 1000 coincidence counts a second, spread among all
the detector pairs. For each data point we acquire coinci-
dence counts for 30 sec using a homebuilt coincidence
counter based on an FPGA.We are able to make the desired
entangled state with a fidelity of 95.9%, which we measure
by performing quantum state tomography (QST) on the
photons directly after the single-mode fiber [30].

A modified quantum circuit which implements Lund and
Wiseman’s proposal [8] and includes the line cluster cre-
ation is drawn in Fig. 2(a), with the corresponding optical
implementation below in Fig. 2(b). A single logical polar-
ization qubit, �jHi þ �jVi, is encoded in two physical
polarization qubits, forming the line cluster �jH1H2i þ
�jV1V2i. Using a line cluster allows the first photon’s
polarization to control a CNOT gate with an additional
path degree of freedom, realized using a polarizing beam
splitter (PBS), to implement the weak measurement. After

this step the state is �jH1H2ijA1i þ �jV1V2ijB1i, where
jA1i and jB1i denote two different states of the path degrees
of freedom,jA1i ¼ �jP0i þ ��jP1i and jB1i ¼ ��jP0i þ
�jP1i. Now, measuring the first polarization in the X̂ basis

and finding X̂ ¼ þ1 teleports the state of the system to the

polarization of the second photon, hH1þV1
ffiffi

2
p jð�jH1H2ijA1i þ

�jV1V2ijB1iÞ ¼ �jH2ijA1i þ �jV2ijB1i. (If instead, the

measurement result is X̂ ¼ �1 the teleported state will
be unitarily rotated to�jH2ijA1i � �jV2ijB1i; in principle,
one could correct this using feed-forward [31], but for
simplicity we discard these events.) We characterize the
teleportation by performing QST on the teleported single
photon polarization. To do this we insert quarter- and half-
wave plates, Q4 and H4, and remove the path qubit of
photon 2. We find the teleported state has a fidelity of
93.4% with the expected state, mainly due to the reduced
visibility of the interferometers. The polarization of the
second photon is now free to be measured by the MA,
which is implemented using a PBS and additional path
degrees of freedom of photon 2, in the same way that
photon 1 was weakly measured.
In order to clearly demonstrate a violation of

Heisenberg’s MDR we first experimentally characterize
the bound of Eqs. (2) and (3). Lund and Wiseman discuss
the limiting case of using perfectly weak measurements to
characterize the system before the action of the MA [8].
However, in order to extract any information from this
initial measurement, it cannot of course be infinitely
weak. Although for our system, both the precision and
the disturbance are independent of the weak measurement
strength, the bound of Eqs. (2) and (3) is not. For instance,

if we replaced the weak measurement of Ẑ with a strong

one, this would project the system onto eigenstates of Ẑ, all

of which have jhŶij ¼ 0; the inequality would automati-
cally be satisfied in this case. The weaker the measurement,

the less jhŶij is reduced, and the stronger the inequality. We
measured this experimentally, and Fig. 3 presents our data

for jhŶij of the state just after the weak measurement, as a
function of measurement strength, along with theory. It is
important to note that these experimental difficulties can
only lower the LHS of Eq. (2), and therefore cannot lead to
a false violation.
To show a violation of Heisenberg’s MDR we measure

the precision and the disturbance of the MA. To measure

the X disturbance we weakly measure X̂ on the system
before the MA post-selected on a strong measurement of

X̂ afterwards. Similarly, the Z precision of the MA is

obtained by weakly measuring Ẑ and then postselecting

on a strong measurement of Ẑ on the probe. From the
results of these weak measurements the X disturbance
and Z precision can be acquired. As an example, consider

the X disturbance, �ðX̂Þ, as defined in Eq. (5). We need

to measure the quantities PWVð�X̂Þ for all �X̂. Since we

are dealing with the polarization of a single photon, �X̂

FIG. 2 (color online). (a) The logical quantum circuit that we
implement. We use ideas from cluster state quantum computing,
namely, single-qubit teleportation, to implement successive
quantum gates. The first shaded area represents the creation of
the entangled resource. After a 2-qubit cluster is created, the first
qubit controls the controlled not gate used as our weak interac-
tion. After this it is measured and its state is teleported to qubit 2.
Qubit 2 then interacts with a second probe, which we use for our
von Neumann measurement. (b) The optical setup we use to
implement the quantum circuit in (a). We use two entangled
photons generated from spontaneous parametric down-
conversion as the first two qubits of the circuit. Path qubits are
added to each photon with 50=50 beam splitters, and their state is
initialized using variable attenuators.
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can only equal 0 or �2. PWVð�X̂ ¼ �2Þ is the weak

probability that the system initially had X̂ ¼ �1 and we

found it in in X̂ ¼ �1. These probabilities can be expressed

in terms of weak expectation values of X̂, postselected on

finding the system after the MA with X̂f ¼ �1, hX̂iX̂f
, as

[8]: PWVð�X̂¼�2Þ¼1
2ð1�hX̂iX̂f¼�1ÞPðX̂f¼�1Þ. In our

experiment, PðX̂f ¼ þ1Þ corresponds to the probability

of finding photon 2 diagonally polarized, given that the
teleportation on the first photon’s polarization succeeds,
which is signalled by photon 1 being diagonally polarized.
As shown in Fig. 2(b), both PBS’s are set to measure in the
diagonal basis, so this measurement amounts to counting
two-photon events between the transmitted ports of PBS1
(detectors D1 or D2) and PBS 2 (detectors D5 or D6). The
weak expectation value can be expressed in terms of the

weak probe observable Ẑp, since X̂ of the system couples to

Ẑ of the probe, as [25]:

hX̂iX̂f
¼ PðẐp ¼ þ1jX̂fÞ � PðẐp ¼ �1jX̂fÞ

2j�j2 � 1
: (6)

Here, 2j�j2 � 1 is the strength of the initial weak measure-
ment, which we know and set through the state of the probe.

The remaining quantities, PðẐp ¼ þ1jX̂f ¼ �1Þ and

PðẐp ¼ �1jX̂f ¼ �1Þ, are directly measurable. For ex-

ample, PðẐp ¼ þ1jX̂f ¼ �1Þ is the probability of finding

the first photon in path 1 given that the second photon was
found vertically polarized in either path. It is measured by
two-photon events between detector D1 (for the teleporta-

tion to succeed and for Ẑp ¼ þ1) and the transmitted port

of PBS 2 (detectors D5 or D6), to postselect on X̂f ¼ þ1.

A similar analysis can be done for the Z precision, but now
rather than postselecting on the polarization of photon 2,

X̂f, one has to postselect on the Ẑ value of the MA probe,

which is the path of the second photon.
The precision and disturbance were measured for sev-

eral measurement apparatus strengths and are plotted in
Fig. 4(a). The dashed lines are predictions for an ideal
implementation of the quantum circuit in Fig. 2(a), while
the solid lines, which fit our data well, take into account the

imperfect entangled state preparation. The imperfect state
preparation leads to errors in the single-qubit teleportation,
increasing the rms difference between the measurements
on the weak probe before the MA and the final verification
measurements, on the system and probe, after the MA.
Again, these errors can only increase disturbance and
precision, and thus the LHS of Eq. (2), and cannot lead
to a false violation.
From the measured precision and disturbance the LHS

of Heisenberg and Ozawa’s precision limits can be con-
structed. We set the strength of the initial weak measure-
ment such that the RHS of Eq. (2) is large enough that
Heisenberg’s MDR violated for all settings of the MA. We

measure jhŶij ¼ 0:80� 0:02, which gives the forbidden
region in Fig. 4(b). Heisenberg’s quantity, which can be
reconstructed simply from the measurements of the preci-
sion and the disturbance, is plotted in red. Ozawa’s quan-

tity, for which additional measurements of �X̂ and �Ẑ
were made on the state, using quarter- and half-wave plates
Q4 and H4, after the weak measurement, is plotted in
orange. The error bars are due to Poissonian counting
statistics. As seen in Fig. 4(b), Ozawa’s MDR remains

FIG. 3 (color online). A plot of the RHS of Eqs. (1) and (3)
versus the strength of the weak probing measurement. The
dashed line includes only the effect of the nonzero weak mea-
surement strength. In addition to this effect, the solid line takes
into account the imperfect teleportation.

FIG. 4 (color online). Experimental results. (a) The precision
of the measurement apparatus (MA) and disturbance it imparts to
the system plotted against its strength. (b) A plot of the left-hand
side of Heisenberg and Ozawa’s relations versus the strength of
the MA. For X̂ and Ẑ Heisenberg’s quantity is �ðẐÞ�ðX̂Þ, and
Ozawa’s quantity is �ðẐÞ�ðX̂Þ þ �ðẐÞ�X̂ þ �ðX̂Þ�Ẑ. The pre-
sumed bound on these quantities is given by the RHS of the
relations, measured to be jhŶij ¼ 0:80� 0:02. Heisenberg’s
MDR is clearly violated, with his quantity falling below the
bound, while Ozawa’s MDR remains valid for all experimentally
accessible parameters.
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valid for all the experimentally tested parameters, while we
find that the simple product of the precision and the dis-
turbance—Heisenberg’s MDR—always falls below the
experimentally measured bound.

In conclusion, using weak measurements to experimen-
tally characterize a system before and after it interacts with
a measurement apparatus, we have directly measured its
precision and the disturbance. This has allowed us to
measure a violation of Heisenberg’s hypothesized MDR.
Our work conclusively shows that, although correct for
uncertainties in states, the form of Heisenberg’s precision
limit is incorrect if naively applied to measurement. Our
work highlights an important fundamental difference be-
tween uncertainties in states and the limitations of mea-
surement in quantum mechanics.
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